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Abstract

Huynh et al. recently showed that a countable graphG which contains every count-
able planar graph as a subgraph must contain arbitrarily large finite complete graphs
as topological minors, and an infinite complete graph as a minor. We strengthen
this result by showing that the same conclusion holds, if G contains every countable
planar graph as a topological minor. In particular, there is no countable planar
graph containing every countable planar graph as a topological minor, answering a
question by Diestel and Kühn.

Moreover, we construct a locally finite planar graph which contains every locally
finite planar graph as a topological minor. This shows that in the above result
it is not enough to require that G contains every locally finite planar graph as a
topological minor.

1 Introduction

Call a graph U universal for a graph class G, if it contains every element of G, and let
us say that G contains a universal element if there is a universal graph U for G which
is contained in G. Depending on the precise definition of containment, this leads to
different notions of universality and different universal graphs.

Clearly, these notions are not independent, for instance, if U is universal for G with
respect to subgraph containment, then it is also universal with respect to minor con-
tainment because every subgraph is also a minor. Research has mostly focused on the
strongest notions of universality, that is universality with respect to subgraph or induced
subgraph containment [1, 3, 7, 9, 13, 14, 15]. However, considering weaker universality
notions for graph classes which do not admit universal elements in this strong sense also
leads to interesting questions and beautiful results [4, 6, 11, 12].

In the present paper, we are interested in universal elements for classes of planar
graphs. A classic result by Pach [14] states that the class of all planar graphs does not
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contain a universal element with respect to the subgraph relation, thereby providing a
negative answer to a question which Pach attributes to Ulam.

In contrast to this result, Diestel and Kühn [4] show that there is a countable planar
graph containing all countable planar graphs as minors. This immediately leads to the
question for which notions of containment in between the subgraph relation and the
minor relation the class of planar graphs contains a universal element. In particular,
Diestel and Kühn ask [4, Problem 6] whether the class of planar graphs contains a uni-
versal element with respect to the topological minor relation. Our main result provides
a negative answer to this question.

Theorem 1.1. The class of countable planar graphs does not contain a universal graph
with respect to the topological minor relation.

We point out that Theorem 1.1 has been proved independently by Krill in his master’s
thesis [10], see also the preprint [11]. While our proof is longer and more involved than
the one presented in [10], it in fact also shows a significantly stronger result.

In a recent preprint, Huynh, Mohar, Šámal, Thomassen, and Wood [8] investigate how
sparse a graph which contains all planar graphs as subgraphs can be. In other words,
rather than relaxing the notion of containment, they ask how much the requirement of
planarity of the universal graph needs to be relaxed in order to get a different answer
to Ulam’s question. They obtain two complementary results. On the one hand, they
show that there are universal graphs for the class of planar graphs which share some key
properties with planar graphs such as linear colouring numbers, linear expansion, and
balanced separators of size O(

√
n) in every n-vertex subgraph. On the other hand, they

prove that a universal graph for the class of countable planar graphs with respect to
the subgraph relation is in some sense very far from being planar: it contains arbitrarily
large complete graphs as topological minors, and the countably infinite complete graph
as a minor. In Section 3, we prove the following strengthening of the latter result which
immediately implies Theorem 1.1.

Theorem 1.2. Let G be a countable graph containing every countable planar graph as
a topological minor. Then

1. G contains an infinite complete minor, and

2. G contains arbitrarily large finite complete topological minors.

In Section 4, we turn our attention to locally finite graphs, that is, graphs in which
every vertex has only finitely many neighbours. The main result of this section shows
that the conclusion of Theorem 1.2 no longer holds if we only require G to contain all
locally finite planar graphs as topological minors.

Theorem 1.3. The class of locally finite planar graphs contains a universal element
with respect to the topological minor relation.

To fully appreciate this result, it is worth mentioning that the aforementioned uni-
versality results concerning the subgraph relation and the minor relation are unaffected
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by restricting to locally finite graphs. Pach’s proof from [14] in fact shows that there
is no planar graph containing every locally finite planar graph as a subgraph, and the
conclusion of the result by Huynh et al. from [8] mentioned above still holds for graphs
containing all locally finite planar graphs as subgraphs. Moreover, the universal planar
graph for the minor relation constructed in [4] is in fact locally finite. In light of this,
it is perhaps surprising that local finiteness makes a big difference when considering the
topological minor relation.

2 Preliminaries

The purpose of this section is to recall basic definitions and set up some notation. For
graph theoretic notions not explicitly defined, we follow [2].

A graph G consists of a set V (G) of vertices and a set E(G) of edges. Given two
graphs G and H, we denote by G∪H the graph with vertex set V (G)∪ V (H) and edge
set E(G) ∪ E(H). Similarly define G ∩ H. We stress that the graphs in a union do
not have to be disjoint, in particular we will often consider unions of graphs which have
vertices in common.

It will be convenient to consider cycles in graphs as cyclic sequences of vertices. Given
a sequence X = (x1, . . . , xn) , a sequence of the form (xk, . . . , xn, x1, . . . xk−1) is called
a cyclic shift of X. Call two sequences cyclically equivalent if they are cyclic shifts of
one another. Call an equivalence class with respect to this relation a cyclic sequence
and denote the cyclic sequence containing (x1, . . . , xn) by [x1, . . . , xn]. A directed cycle
in a graph G is a cyclic sequence C = [v1, . . . , vn] of vertices such that vivi+1 ∈ E(G)
for every i < n and v1vn ∈ E(G). Note that this assigns a direction to the cycle even
though the graphs we consider are usually undirected.

Let us call a sequence Y = (y1, . . . , yk) cyclically ordered with respect to a cyclic
sequence X = [x1, . . . , xn], if some representative of X contains Y as a subsequence. If
X is clear from the context, we simply call Y cyclically ordered. Clearly, if Y is cyclically
ordered, then so is any sequence which is cyclically equivalent to Y ; we may thus extend
this notion to the case where Y is a cyclic sequence.

All (cyclic) sequences considered from now on will be sequences of vertices of graphs.
For such a (cyclic) sequence X, let us denote the set of all vertices appearing in X by
V (X). Let X1 and X2 be cyclic sequences of vertices, let Y ⊆ V (X1), and let (y1, . . . , yn)
be a cyclically ordered enumeration of Y . We say that a function φ : Y → V (X2)
preserves the cyclic order if (φ(y1), . . . , φ(yk)) is cyclically ordered with respect to X2.
We say that such a function reverses the cyclic order if (φ(yk), . . . , φ(y1)) is cyclically
ordered with respect to X2.

A plane embedding of a graph G assigns to each vertex v ∈ V (G) a point ι(v) ∈ R2

and to each edge e = uv ∈ E(G) a polygonal arc ι(e) in R2 connecting ι(u) to ι(v) such
that the map ι : V (G) → R2 is injective, and for any two distinct edges e and f the
arcs ι(e) and ι(f) are internally disjoint. By a slight abuse of notation we write ι(G) for⋃
v∈V (G){ι(v)} ∪

⋃
e∈E(G) ι(e). Let us call a graph planar if it has a plane embedding.

Note that we do not forbid that ι(G) has accumulation points.
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The following theorem by Dirac and Schuster [5] gives a necessary and sufficient con-
dition for the planarity of countable graphs.

Theorem 2.1. A countable graph is planar if and only if all of its finite subgraphs are
planar.

A similar condition for arbitrary graphs has been given by Wagner [16].

Theorem 2.2. An arbitrary graph is planar if and only if it has at most continuum
many vertices and at most countably many vertices of degree greater than 2, and all of
its finite subgraphs are planar.

Similarly to embeddings of graphs in the plane, we can also define embeddings of
graphs in other graphs. For two graphs G and H, a G-embedding ι of H assigns to every
v ∈ V (H) a vertex ι(v) ∈ V (G) and to every edge e = uv ∈ E(H) a ι(u)–ι(v)-path ι(e)
in G such that the map ι : V (G)→ V (H) is injective, and for distinct edges e and f the
paths ι(e) and ι(f) are internally disjoint. We call H a topological minor of G if there
is a G-embedding of H.

Let us say that two G-embeddings ι, ι′ of a graph H agree on S ⊆ V (H) ∪ E(H),
if for any s ∈ S we have ι(s) = ι′(s). By slight abuse of notation we extend this
notion to G-embeddings of different graphs as follows. Let S ⊆ V (H) ∪ E(H) and let
S′ ⊆ V (H ′) ∪ E(H ′). Let f : S → S′ be a bijection. Let ι be a G-embedding of H, and
let ι′ be a G-embedding of H ′. We say that ι and ι′ agree via f on S, if ι(s) = ι′(f(s))
for all s ∈ S. If H and H ′ have a subgraph in common and all elements in S are
contained in this subgraph, then we omit f and tacitly assume that f is the identity.
This in particular includes the case where H and H ′ are obtained from the same graph
by adding some vertices and edges.

We say that a family I of G-embeddings (possibly of different graphs) agrees on S
if any pair ι, ι′ agrees on S. We point out that we will only need this notion for sets
contained in common subgraphs of all involved graphs. We denote the common image
of s ∈ S under all ι ∈ I by I(s).

Theorems 2.1 and 2.2 do not extend to this notion of embedding: there are graphs G
and H such that all finite subgraphs of H admit a G-embedding, but H does not. For
instance, we can let G be the disjoint union of all finite graphs (up to isomorphism), and
let H be any graph with at least one infinite component.

Let (Gn)n∈N be an increasing sequence of graphs, that is, Gn is a subgraph of Gn+1

for every n ∈ N. We define limn→∞Gn as the graph with vertex set
⋃
n∈N V (Gn) and

edge set
⋃
n∈NE(Gn).

Lemma 2.3. Let (Hn)n∈N be an increasing sequence of graphs and let H = limn→∞Hn.
If there are G-embeddings ιn of Hn such that ιn+1 and ιn agree on Hn for every n, then
there is a G-embedding ι of H which agrees with ιn on Hn for every n.

Proof. For x ∈ V (H) ∪ E(H) pick n large enough that x ∈ V (Hn) ∪ E(Hn) and set
ι(x) = ιn(x). The conditions of the lemma ensure that this is unambiguous and defines
a G-embedding of H.
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Figure 1: The triangular wedge W and the triple wedge W .

Theorems 2.1 and 2.2, and Lemma 2.3 tell us that we can obtain (plane or G-) embed-
dings of infinite graphs by constructing embeddings of an increasing sequence of finite
subgraphs. In the remainder of this section we recall some well known facts and make
some easy observations about finite planar graphs.

If ι is a plane embedding of a finite connected graph G, then R2\ι(G) consists of finitely
many open disks and one unbounded region which we call the faces of the embedding;
the unbounded region is called the outer face, all other regions are called interior faces.
If ι is a plane embedding of an infinite graph G, we still call a connected component of
R2 \ ι(G) a face of the embedding. We note that the complement of an embedding of
an infinite planar graph can be much more complicated due to accumulation points of
the embedding; in particular, faces of embeddings of infinite graphs are not necessarily
homeomorphic to disks.

3 No universal countable planar graph

Before turning to the proof of Theorem 1.2, we briefly give an overview of the key ideas.
The proof is similar to the proof of the analogous theorem for subgraph embeddings in
[8, Section 3] which can be summarised as follows: take an uncountable family of grid-
like planar graphs, prove that any graph containing all of these graphs simultaneously
must also contain another grid-like planar graph with certain gadgets attached to it,
and then use these gadgets to find a countable complete minor as well as large complete
topological minors.

To explain the proof ideas in more detail, we need to describe the grid-like graphs that
we are going to use. The triangular wedge W is a ‘triangular quarter grid’, the triple
wedge W is obtained from the disjoint union of three copies of the triangular wedge by
adding edges between these copies, see Figure 1 for a sketch, and Section 3.1 for a precise
definition.

We can construct an uncountable family of planar graphs from the triple wedge by
adding one of the two diagonals in infinitely many of the faces bounded by cycles of
length 4. Denote these graphs by W (α) with α ∈ {0, 1}n. For a graph G, let us write G‖

for the graph obtained from G by replacing every edge by a countably infinite collection
of internally disjoint paths with the same endpoints as this edge. We note that each
graph W (α)‖ is planar by Theorem 2.1.
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Figure 2: A pair of crossing paths attached to the triangular wedge. Note that the paths
are disjoint, in particular there is no vertex at the intersection in the drawing

The first and most difficult step in the proof of Theorem 1.2 is to show that a graph
which contains every W (α)‖ as a topological minor also contains an embedding some
graph W+ obtained from the triangular wedge W by adding infinitely many pairwise
disjoint paths Pi satisfying the following two properties.

(i) Each Pi starts at a vertex on the leftmost vertical ray of W and ends at a vertex
of the bottom horizontal ray of W , and is otherwise disjoint from W .

(ii) There are infinitely many pairs i, j such that Pi and Pj cross in the sense that the
first vertex of Pi lies above the first vertex of Pj and the last vertex of Pi lies left
of the last vertex of Pj , see Figure 2.

Once we have established the existence of an embedding of such a graph W+, the
second step is to show that W+ contains a set of infinitely many disjoint rays such that
each pair of them is connected by infinitely many edges. Clearly, such a set of rays gives
a countably infinite complete minor whose branch sets are precisely those rays.

The proof of second part of Theorem 1.2, that is, showing that we can guarantee
arbitrarily large finite complete graphs follows the same outline, but requires some small
tweaks to both parts of the proof.

As mentioned above, similar ideas are used in [8, Section 3]. We briefly comment
on the most important differences between the proof of Theorem 1.2 and the analogous
result for subgraph embeddings.

Perhaps the most important difference and the main technical difficulty we need to
overcome is that topological minor embeddings are a lot more flexible than subgraph
embeddings. Indeed, we note that the graphs W (α) are f -isoperimetric plane triangu-
lations in the sense of [8], and thus any graph containing all of them as subgraphs must
contain a countably infinite complete minor by [8, Lemma 3.9]. However, each W (α) is
locally finite, so Theorem 1.3 implies that there is a planar graph containing each W (α)
as a topological minor. In particular, in the first proof step is not enough to consider
the graphs W (α) instead of W (α)‖.

The second proof step is similar to the proof of [8, Lemma 3.8]. In fact, if we only want
to show the existence of a countably infinite complete minor, then we can directly apply
[8, Lemma 3.8] to a suitable minor of W+ and do not have to explicitly construct any
family of rays. However, the modification which yields arbitrarily large finite complete
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Figure 3: Triangular wedge. The bold path is the 5-th layer W5, the subgraph inside the
shaded area is the 2–6-strip W2,6.

minors (similarly to [8, Theorem 3.11]) requires a modification of W , as well as better
control over the family of rays in the graph playing the role of W+ in the modification.

3.1 Notation and definitions

Before we turn to the proof details, we rigorously define the graphs mentioned in the
above proof sketch and set up some notation for them.

The triangular wedge W is the graph with vertex set N0 × N0 and edges between
vertices whose coordinates differ by (1, 0), (0, 1) or (1,−1), see Figure 3. The k-th layer
Wk of W is the subgraph induced by the vertices whose coordinates (i, j) satisfy i+j = k.
For 0 ≤ i ≤ k, let wik be the vertex with coordinates (i, k − i), in other words wik is the
i-th vertex of Wk in left-to-right order. For m < n, define the m–n-strip Wm,n as the
subgraph of W induced by the vertices in

⋃
m≤k≤nWk. We allow n = ∞ and define

Wm,∞ as the subgraph of W induced by the vertices in
⋃
m≤kWk

Assume that W is a subgraph of some larger graph G. A bypass for Wm,n in G is a
w0
a–w

b
b-path P with m < a < n,m < b < n which meets W only at its endpoints. If we

do not care about m and n, we sometimes also simply call P a bypass for W . A bypass
P from w0

a to wbb and bypass P ′ from w0
a′ to wb

′
b′ are said to be crossing if either a < a′

and b′ < b, or a > a′ and b′ > b, see Figure 2.
Let X, Y , and Z be isomorphic copies of W . We denote by Xk, Yk, Zk, x

i
k, y

i
k, z

i
k,

Xm,n, Ym,n, and Zm,n the respective copies of Wk, w
i
k, and Wm,n. The triple wedge W

is the graph obtained from the disjoint union of X, Y , and Z by adding edges between
xkk and y0k, between ykk and z0k, and between zkk and x0k for all k ∈ N0, see Figure 4. The
annulus Wm,n is the subgraph of W induced by the vertices of Xm,n, Ym,n, and Zm,n.
Call a vertex of W enclosed, if its neighbourhood is entirely contained in one of the three
wedges X, Y , or Z.

For k ∈ N, let Ck be the 4-cycle xkk, y
0
k, y

0
k+1, x

k+1
k+1 in W . For α ∈ {0, 1}N, denote by

W (α) the graph obtained from W by adding the edge from xkk to y0k+1 if αk = 0 and

from xk+1
k+1 to y0k if αk = 1. Note that W (α) is planar since each Ck is a facial cycle in the
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Figure 4: The triple wedge W . The subgraph inside the shaded area is the annulus W 2,4.

embedding of W shown in Figure 4. Denote by Wm,n(α) the subgraph of W (α) induced
by the vertices of Wm,n.

The infinitely parallel blow-up G‖ of a graph G is the graph obtained from G by
replacing every edge e of G by a countably infinite set of paths of length 2 connecting
the endpoints of e. Clearly, all vertices of G‖ have either infinite degree, or degree 2.
Note that if G is a countable planar graph, then G‖ is planar by Theorem 2.1. We call
the vertices of infinite degree in (a subdivision of) G‖ original vertices, and the vertices
of degree 2 new vertices. If no confusion is possible, we identify original vertices with
the corresponding vertices in G, in particular we call a pair of original vertices adjacent
if the corresponding vertices in G are adjacent.

3.2 Finding a triangular wedge with many disjoint bypasses

Our goal in this subsection is to complete the first step in the proof sketch above. In
other words, we will show that if all graphs W (α)‖ embed in a graph G, then G also
contains an embedding of W with infinitely many pairs of crossing bypasses.

In fact, we prove the following slightly stronger statement. Assume that uncountably
many graphs Wm,∞(α)‖ embed in a graph G, and that all of the embeddings coincide
on the original vertices in Wm, then G contains an embedding of Wm,∞ with infinitely
many pairs of crossing bypasses, and the embedding of the vertices of Wm coincides with
the embedding of the vertices in Xm, Ym, or Zm. We point out that this strengthening
is necessary in order to be able to use the result in the (slightly more technical) proof of
the second part of Theorem 1.2.

To formally state the main result of this subsection, recall that a set I of embeddings
is said to agree on a set S of vertices, if ι(s) = ι′(s) for every pair ι, ι′ ∈ I and every
s ∈ S. Further recall that in this case we write I(s) for the image of s ∈ S under some
(and thus every) ι ∈ I.
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Lemma 3.1. Let G be a countable graph and let m > 0. Let A ⊆ {0, 1}N be an
uncountable set, and assume there are G-embeddings ια of Wm,∞(α)‖ which agree on
V (Wm). Let I = {ια | α ∈ A}.

There is a graph W+ obtained from Wm,∞ by adding an infinite family of disjoint
bypasses containing infinitely many crossing pairs, and a G-embedding ι of W+ such
that there is ξ ∈ {x, y, z} with ι(wim) = I(ξim) for 0 ≤ i ≤ m.

We start by showing how adding an edge to W creates a pair of crossing bypasses for
one of the three wedges X, Y , or Z. By symmetry the following lemma clearly remains
true if we swap the roles of X, Y , and Z.

Lemma 3.2. Let u and v be non-adjacent vertices in Xm+1,n−1∪Ym+1,n−1. Assume that
u is an enclosed vertex. The graph obtained from Wm,n by adding the edge uv contains
a crossing pair of bypasses for Z.

Proof. The following notation will be convenient in the proof: If a, b in W k are vertices
none of whose neighbourhoods is entirely contained in Z, then there is a unique a–b-path
in W k all of whose internal vertices lie in X or Y . Let us denote this path by P (a, b).

First assume that u and v lie in different wedges. By symmetry, we may without loss
of generality assume that u ∈ X and v ∈ Y . There are i, j, k, l such that u = xik and

v = yjl . The concatenation of P (zkk , u), the edge uv, and P (v, z0l ) gives a bypass P for Z.
The concatenation of P (zmm , x

m
m), the path xmm, x

m+1
m+1, x

m+2
m+2, . . . , x

n
n, and P (xnn, z

0
n) gives

another bypass P ′ for Z. Note that since u is enclosed, we know that 0 < i < k, hence
P does not contain xtt for any t. Since m < k, l < n, we conclude that P and P ′ are
disjoint and crossing.

If u and v lie in the same wedge, then we may without loss of generality assume that
they both lie in X. There are i, j, k, l such that u = xik and v = xjl . Let us assume that
i ≤ j, the case i ≥ j is completely analogous. As before, the concatenation of P (zkk , u),
the edge uv , and P (v, z0l ) gives a bypass P for Z. Define another bypass P ′ for Z by
concatenation of P (zmm , x

i−1
m ), the path

xi−1m , xi−1m+1, x
i−1
m+2, . . . , x

i−1
k−1, x

i
k−1, x

i+1
k , xi+1

k+1, x
i
k+1, x

i−1
k+1, x

i−1
k+2, . . . , x

i−1
n

and P (xi−1n , z0n); Figure 5 illustrates the restrictions of P and P ′ to the wedge X. Note
that the only vertices xts on P ′ for which m < s < n and t > i are neighbours of u. If P
contained one of these vertices then either v would be a neighbour of u, or i > j both of
which contradict our assumptions. m < k, l < n, we again conclude that P and P ′ are
disjoint and crossing.

Proof of Lemma 3.1. To simplify notation, throughout this proof we let H = Wm,∞, let
Hn = Wm,n, let H(α) = Wm,∞(α), and let Hn(α) = Wm,n(α).

First assume that I agrees on V (H), that is, each original vertex has the same image
under every ια. Let K ⊆ N be the set of all k for which there are α, β ∈ A with αk 6= βk.
Since I is infinite, the set K is infinite as well. Let E+ be the union of all E(H(α)) for
α ∈ A. Note that E+ contains all edges of W and both diagonals of the cycle Ck for
every k ∈ K. Let H+ be the graph with vertex set V (H) and edge set E+.
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P

P ′

Figure 5: Restrictions of the paths P and P ′ in the last part of the proof of Lemma 3.2
to the wedge X.

We can easily see that there is G-embedding of H+ as follows. For every edge uv ∈ E+,
the images of the infinitely many paths connecting u to v in H(α)‖ under the embedding
ια are internally disjoint from I(V (H)). Thus we can pick an enumeration of the edges
in E+ and for each edge uv ∈ E+ pick a I(u)–I(v)-path Puv which is disjoint from all
paths chosen for the preceding edges.

For every k ∈ K, the graph H+ contains a pair of crossing bypasses for Z. One is
obtained by concatenating the path consisting of zkk together with all vertices of Xk, the
edge from xkk to y0k+1, and the path consisting of all vertices of Yk+1 and z0k+1. The other

is obtained by concatenating the path consisting of zk+1
k+1 and all vertices of Xk+1, the

edge from xk+1
k+1 to y0k, and the path consisting of all vertices of Yk and z0k. Note that

among these bypasses there is an infinite disjoint family with infinitely many crossing
pairs. Let W+ be the wedge Z together with such a family of bypasses, and let ι be the
restriction of the G-embedding of H+ to W+; by definition we have ι(wim) = I(zim) for
0 ≤ i ≤ m. This finishes the proof in case I agrees on V (H).

If I contains an uncountable subfamily which agrees on V (H), then the same argument
as above can be applied to this subfamily. Hence from now on assume that there is no
such subfamily. In the remainder of the proof, we ignore the additional edges in H(α)
and view I as a family of G-embeddings of H‖.

For each i ∈ N0 we recursively define

• an integer ni,

• a set Mi of edges, and

• a G-embedding ιi of the graph H+
i obtained from Hni by adding all edges in Mi

satisfying the following properties:

(i) n0 = m and ni > ni−1 for i > 0,

(ii) M0 = ∅, and Mi \Mi−1 = {mi} for i > 0; the endpoints of mi are not adjacent in
H, contained in V (Hni) \ V (Hni−1), and at least one of them is enclosed,

(iii) ι0 agrees with I on V (Hm), and the restriction of ιi to H+
i−1 is ιi−1 for i > 0.

Before carrying out the recursive construction, let us show how the resulting sequences
can be used to finish the proof of the lemma. Let H+ = limi→∞H

+
i . Since ni and Mi

are strictly increasing, H+ is the graph obtained from H by adding the (infinite) set
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M =
⋃
i∈NMi. Note that there is an infinite subset M ′ ⊆M such that no edge in M ′ has

an endpoint in one of the three wedges X, Y , or Z; by symmetry we may assume that no
edge in M ′ has an endpoint in Z. By Lemma 3.2 the graph H+ contains an infinite set
of disjoint bypasses for Zm,∞ containing infinitely many crossing pairs. Let W+ be the
union of Zm,∞ and these bypasses. Lemma 2.3 tells us that there is a G-embedding ι of
H+ which agrees with each ιi on H+

i , and thus agrees with I on V (Hm). The restriction
of ι to W+ is the desired G-embedding of W+.

It remains to construct the sequences ni, Mi, and ιi. Alongside these sequences, for
every i we also construct

• an uncountable family Ji ⊆ I
such that

(iv) Ji ∪ {ιi} agrees on V (Hni), and

(v) ιi(H
+
i ) ∩ κ(V (H)) ⊆ κ(V (Hni)) for every κ ∈ Ji.

Note that for any uncountable family J ⊆ I and any finite set S of vertices and edges
of H‖, there is an uncountable subfamily of J which agrees on S. This is due to the
fact that G is countable and thus there are only countably many possible images of S.
This fact will be used at several points in the construction.

Let n0 = m, and let M0 = ∅. For any pair a, b of adjacent vertices in Hm pick a path

Pab of length 2 connecting them in H
‖
m . Let J0 ⊆ I be an uncountable family which

agrees on every Pab. Define a G-embedding ι0 of H+
0 = Hm by ι(v) = I(v) for every

vertex of H+
0 , and ι(ab) = J0(Pab) for every edge of H+

0 . Properties (i)–(v) are easily
seen to hold for n0, M0, ι0, and J0.

The recursive step from i to i+ 1 rests on the following claim.

Claim. For some n > ni there are

(1) an uncountable subfamily J ⊆ Ji which agrees on V (Hn),

(2) u, v ∈ V (Hn) \ V (Hni) which are not adjacent in H such that u is enclosed, and

(3) a J (u)–J (v)-path P such that P ∩ ιi(H+
i ) is empty, and P ∩κ(V (H)) = J ({u, v})

for every κ ∈ J .

Let us assume first that the claim is true. We let ni+1 = n and Ei+1 = Ei ∪ {uv} for
the n, u, and v provided by the claim. Let N be the number of vertices contained in
ιi(H

+
i )∪P . For every pair a, b of adjacent vertices in Hn pick N + 1 different a–b-paths

of length 2 in H‖, and let Ji+1 ⊆ J be an uncountable set which agrees on all of these
paths. Note that these paths are pairwise internally disjoint, and (by the pigeonhole
principle) for each pair a, b, the image of at least one such path Pab is internally disjoint
from ιi(H

+
i ) ∪ P . Let

ιi+1(x) =


ιi(x) if x ∈ V (H+

i ) ∪ E(H+
i ),

Ji+1(x) if x ∈ V (Hni+1) \ V (Hni),

Ji+1(Pab) if x = ab ∈ E(Hni+1) \ E(Hni),

P if x = uv.
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We briefly check that ιi+1 is a G-embedding of H+
i+1. First note that the image of any

edge is a path connecting the images of the respective endpoints. For edges in E(H+
i )

this follows from the induction hypothesis, for edges in E(Hni+1) \ E(Hni) it follows

from the fact that every element of Ji+1 is a G-embedding of H‖ which agrees with
ιi on V (H+

i ), and for the edge uv it follows from (3) in the above claim. The path
ιi+1(uv) is internally disjoint from ιi(H

+
i ) = ιi+1(H

+
i ) by (3). The paths Ji+1(Pab) are

internally disjoint from P and ιi(H
+
i ) by definition, and they are internally disjoint from

one another since every element of Ji+1 is a G-embedding.
Properties (i), (ii), and (iii) follow from the above claim and the resulting definitions

of ni+1, Mi+1, and ιi+1. For property (iv) note that Ji+1 ∪ {ιi+1} agrees on V (Hni+1) \
V (Hni) by definition of ιi+1 and on V (Hni) by the induction hypothesis since Ji+1 ⊆ Ji.
For (v), note that κ(V (H)) contains no internal vertex of P by (3) above, and no
internal vertex of any image Ji+1(Pab) because κ is contained in Ji+1. By the induction
hypothesis, κ(V (H)) also does not contain an internal vertex of ιi+1(e) = ιi(e) for any
e ∈ E(H+

i ). Hence ιi+1(Hni) ∩ κ(V (H)) ⊆ ιi+1(V (Hni)), and (v) follows from (iv).
It only remains to provide a proof for the above claim. We first show that it suffices to

prove that the conclusion of the claim holds when we replace (3) by the weaker condition
that there is

(3′) a J (u)–J (v)-path P such that P ∩ ιi(H+
i ) is empty, and P ∩ κ(V (Hn+1)) =

J ({u, v}) for every κ ∈ J .

Assume that we have found a family J , vertices u, v and a J (u)–J (v) path P satisfying
(1), (2), and (3′) for some n. Let Pj be the subpath of P of length j starting at J (u).
Let Kj ⊆ J consist of all κ ∈ J for which κ(V (H)) does not contain any internal vertex
of Pj . Let k be maximal such that Kk is uncountable.

If Pk = P , then we can simply replace J by Kk to satisfy the stronger condition (3).
Otherwise, let t 6= J (u) be the other endpoint of Pk. Since V (H) is countable, there
is a vertex v′ ∈ V (H) and an uncountably infinite family K′ ⊆ Kk such that κ(v′) = t
for every κ ∈ K′. Let n′ be such that v′ ∈ V (Hn′), and let K′′ ⊆ J ′ be an uncountably
infinite subfamily which agrees on V (Hn′). The image of V (H) under κ ∈ K′′ does not
contain any internal vertex of Pk since K′′ ⊆ Kk. Further note that v′ /∈ V (Hn+1) by
condition (3′), and thus u and v′ are not adjacent. Hence K′′, the pair u, v′, and the
path Pk satisfy (1), (2), and (3).

Finally, we need to show how to construct a family J , vertices u, v and a J (u)–J (v)
path P satisfying (1), (2), and (3′) for some n.

Let U1 = V (Hni) and recursively define Uk as the union of Uk−1 and all neighbours (in
H) of some enclosed vertex ak which has at most 2 neighbours outside Uk−1. It is not
hard to see that we can pick the vertices ak in this construction such that every vertex
of H is contained in some Uk. Recall that we may assume that there is no uncountable
subset of I which agrees on V (H). In particular, since Ji agrees on V (Hni) but not on
V (H) there is some k such that Ji agrees on Uk but not on Uk+1. Let a = ak, let n be
large enough that Uk+1 ⊆ V (Hn), let K ⊆ Ji be an uncountable family which agrees on
V (Hn), and let κ ∈ Ji be such that K ∪ {κ} does not agree on Uk+1 (and thus does not
agree on the neighbours of a).
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Suppose first that there are a neighbour x of a and a vertex y ∈ V (Hn) such that
κ(x) = K(y). If y is not adjacent to a, then we can choose an uncountable subfamily
J ⊆ K which agrees on V (Hn+1), u = a, and v = y. Recall that κ is an embedding
of H‖, hence G contains infinitely many internally disjoint κ(s)–κ(t)-paths for any pair
of adjacent vertices in H. In particular, there are infinitely many internally disjoint
paths connecting J (a) = κ(a) to κ(x) = J (y). Among these paths we find one with
the desired properties because ιi(H

+
i ) and J (V (Hn+1)) are finite, and ιi(H

+
i ) does not

contain J (a) or J (y) by property (v).
So we may assume that y is adjacent to a; in this case all neighbours of a except x and

y are contained in Uk. Since a is enclosed, there is another common neighbour of a and
x besides y, denote this neighbour by z. Note that y and z are not adjacent. At least
one of y and z is enclosed because a is enclosed, and the non-enclosed neighbours of any
enclosed vertex are adjacent. As above, we can choose an uncountable subfamily J ⊆ K
which agrees on V (Hn+1), u = y and v = z (or vice versa), and a J (z)–J (y)-path with
the desired properties among the infinitely many internally disjoint J (z)–J (y)-paths in
G.

The above argument only required n to be large enough for Uk+1 ⊆ V (Hn); in par-
ticular, it also works if we replace n by n+ 1. Hence from now on let us assume that K
agrees on V (Hn+1) and that no neighbour x of a satisfies κ(x) = K(y) for any y ∈ Hn+1.
The neighbourhood of a in H either induces a 6-cycle and K ∪ {κ} agrees on at least 4
vertices of this 6-cycle because they are contained in Uk, or (in case a ∈Wm) it induces
a path of length 4 and K ∪ {κ} agrees on the endpoints of this path because they are
contained in Uk. Since K∪{κ} does not agree on all neighbours of a, the neighbourhood
of a must contain a path P whose endpoints u and v are not adjacent such that K∪{κ}
agrees on u and v but not on the interior points of P . The same argument as above tells
us that we can connect the images (under κ) of any two consecutive vertices of P by a
path which is disjoint from ιi(H

+
i ), and does not intersect K(V (Hn+1)) except possibly

in K(u) = κ(u) or K(v) = κ(v). The union of these paths contains a K(u)–K(v)-path Q.
The family K, the pair u, v, and the path Q satisfy (1), (2), and (3′).

3.3 Braiding infinite paths

In this section we complete the second step of the above proof sketch. More precisely, we
show how to find sets of infinite paths with edges between any two of them in a graph W+

consisting of a triangular wedge together with a set of infinitely many disjoint bypasses
with infinitely many crossing pairs. Similarly to the previous section, we do not merely
show that such paths exist, but construct them in a fairly structured way to give us the
control we need for the proof of the second statement in Theorem 1.2.

The following observation should be clear, see Figure 6 for a sketch.

Observation 3.3. Let m < n and let P and P ′ be disjoint, crossing bypasses for Wm,n.
The following statements hold for any k ≤ m.

(1) There are disjoint paths in Wm,n connecting wim to win for 0 ≤ i ≤ k.

13



Figure 6: Routing paths in W with crossing bypasses. Each of the above sketches cor-
responds to one of the three statements in Observation 3.3 with m = 4, n = 9
and k = 4.

(2) There are disjoint paths in Wm,n∪P connecting wim to w
(i+1 mod k)
n for 0 ≤ i ≤ k.

(3) There are disjoint paths in Wm,n ∪ P ∪ P ′ connecting w0
m to wkn, wkm to w0

n, and
wim to win for 0 < i < k.

The paths in all three cases can be chosen such that they intersect Wm only in their
initial vertices and Wn only in their terminal vertices.

The next lemma is an immediate consequence of the above observations.

Lemma 3.4. Let (Pi)i∈N be an infinite family of disjoint bypasses for W = W0,∞ con-
taining infinitely many crossing pairs of bypasses. Denote by W+

m,n the union of Wm,n

with all Pi that are bypasses for Wm,n.

(1) For any k < m, and any permutation π of {0, . . . , k} there are some n > m and a

set of disjoint paths in W+
m,n connecting wim to w

π(i)
n for 0 ≤ i ≤ k.

(2) There is an infinite family P of (infinite) pairwise disjoint paths in W+ = W+
0,∞

such that every pair of paths in P is connected by an edge.

Proof. Note that by reordering the sequence of bypasses we may without loss of gener-
ality assume that Pi and Pi+1 are crossing for infinitely many i.

For the proof of (1), note that the cyclic permutation x 7→ x + 1 mod k and the
transposition of 1 and k generate the symmetric group on k elements. Further note
that disjointness of the Pi implies that any vertex of W appears as an endpoint of at
most one Pi. Hence for any l, all but finitely many Pi lie in W+

l,∞, so there must be

some l′ such that W+
l,l′ contains a pair Pi, Pi+1 of bypasses satisfying the conditions of

Observation 3.3. Thus we can iterate Observation 3.3 and concatenate the corresponding
paths to obtain the desired family of paths.

The following recursive construction proves (2). Start with the single path consisting
of a vertex v01. Assume that we have for some m and k constructed disjoint paths in
W+

0,m which end at wim for 0 ≤ i ≤ k. Applying (1) with different permutations and

14



concatenating the resulting paths, we obtain n > m and a family of disjoint paths in
W+

0,n ending at win for 0 ≤ i ≤ k such that every pair of them is connected by an edge.

Add the path consisting of the single vertex wk+1
n to this family and iterate. In the limit,

we get infinitely many disjoint paths each pair of which is connected by an edge.

3.4 Finding large complete (topological) minors

In this subsection, we combine the results from the previous two subsections to prove
Theorem 1.2. The following two results imply the first and second statement of Theo-
rem 1.2, respectively.

Theorem 3.5. Let G be a countable graph, and assume that there are G-embeddings of
W (α)‖ for every α ∈ {0, 1}N. Then G contains a countably infinite complete graph as a
minor.

Proof of Theorem 1.2. For each α ∈ {0, 1}N let ια be a G-embedding of W (α)‖. Un-
countably many of these embeddings agree on V (Wm) for any m, so by Lemma 3.1
there is a G-embedding of a graph W+ consisting of Wm,∞ and an infinite set of disjoint
bypasses containing infinitely many crossing pairs. The graph W+ contains an infinite
complete minor whose branch sets are the infinite paths obtained by Lemma 3.4 (2),
and thus so does G.

For each k ∈ N and α ∈ {0, 1}N, define a graph Hk(α) as follows. Take W k2−1,∞(α),
and add 3k vertices x0∗, . . . , x

k−1
∗ , y0∗, . . . , y

k−1
∗ , z0∗ , . . . , z

k−1
∗ . Add edges between xi∗ and

xik+jm , between yi∗ and yik+jm , and between zi∗ and zik+jm for 0 ≤ j < k. It is not hard to
see that Hk(α) is planar, and thus so is Hk(α)‖.

Theorem 3.6. Let G be a countable graph, and assume that there are G-embeddings of
Hk(α)‖ for every α ∈ {0, 1}N. Then G contains Kk as a topological minor.

Proof. Let m = k2 − 1. As before, let ια be a G-embedding of Hk(α)‖ for every α, and
note that an uncountable family I of these embeddings agrees on V (Wm) and every xi∗,
yi∗, and zi∗, .

Let G′ be the graph obtained from G by removing all images I(xi∗), I(yi∗), and I(zi∗)
for 0 ≤ i < k and note that each embedding ια ∈ I gives rise to a G′-embedding of
Wm,∞(α).

By Lemma 3.1 there is a G′-embedding ι of a graph W+ consisting of Wm,∞ and
an infinite set of disjoint bypasses containing infinitely many crossing pairs such that
(without loss of generality) ι(wim) = I(xim) for 0 ≤ i ≤ m.

Let π be a permutation of {0, . . . , k2} such that π(ik + j) = π(jk + i) + 1 holds for
every pair i, j satisfying 0 ≤ i < j < k. Lemma 3.4 (1) implies that there is some n such

that W+ contains disjoint paths connecting w`m to w
π(`)
n for 0 ≤ ` ≤ k2. Combining

these paths with the edges from w
π(ik+j)
n to w

π(jk+i)
n in W gives disjoint paths in W+

connecting wik+jm to wjk+im for every pair i, j satisfying 0 ≤ i < j < k. The images of
these paths under ι are disjoint I(xki+jm )–I(xkj+im )-paths Pij in G′.
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There are infinitely many internally disjoint paths in G connecting I(xi∗) to I(xki+jm )
since any element of I is a G-embedding of Hk(α)‖. Among these paths we can induc-

tively find internally disjoint I(xi∗)–I(xki+jm )-paths Qij for 0 ≤ i, j < k which are also
internally disjoint from all paths Pij .

We can define a G-embedding κ of the complete graph on k vertices v0, . . . vk−1 by
letting κ(vi) = I(xi∗), and κ(vivj) the union of the paths Qij , Pij , and Qji.

4 A universal, locally finite, planar graph

In this section, we construct a locally finite graph which is universal for the topological
minor relation, thus proving Theorem 1.3. Before doing so, we introduce some notation.

Assume that F is a face of a finite, connected graph. Call a vertex or edge x incident to
F if ι(x) lies in the closure of F . By tracing the boundary of F in clockwise direction if F
is an interior face, or in anti-clockwise direction if F is the outer face, we obtain a cyclic
sequence of vertices incident to this face which we call a facial sequence. The reason
we treat the outer face differently is that we want to make sure that facial sequences
are invariant under making a different face the outer face by applying an appropriate
inversion. A facial sequence may contain the same vertex more than once (this happens
only for cut vertices). If a facial sequence contains each vertex at most once, then this
sequence defines a cycle in the graph which we call a facial cycle. Note that since we
prescribed a direction on the boundary of F , all facial cycles are in fact directed cycles.

Remark 4.1. We can combine two connected planar graphs into a larger one by identify-
ing facial cycles. More precisely, let G and H be two graphs, and let C and C ′ be facial
cycles of the same length in G and H, and let φ : V (C) → V (C ′) be an order reversing
bijection. It is not hard to see that the graph obtained by identifying each vertex v of
C with φ(v) is again planar, and that this graph has a plane embedding in which all
facial sequences of G and H except C and C ′ are again facial sequences. Note that if we
choose φ to be order preserving rather than order reversing, then we also obtain a planar
graph, but the facial sequences of one of the two graphs are reversed in the combined
graph.

Let G be a graph, let W ⊆ V (G) and let φ : W → V (G) be such that φ(W ) ∩W = ∅.
A φ-linkage in G is a set of disjoint paths in G containing a w–φ(w)-path Pw for every
w ∈W . Recall that we consider cycles as cyclically ordered sequences of vertices, which
in particular implies that every cycle has a direction. Let us call two cycles C1 and
C2 well-linked if for any order reversing injection from W ⊆ V (C1) to V (C2) there is
a φ-linkage whose paths meet C1 and C2 only in their respective endpoints. Note that
we take order reversing functions φ so that two facial cycles in a planar graph can be
well linked. An m–n-mesh is a triple (G,C,C ′) where G is a planar graph, C and C ′

are cycles of lengths m and n which are well linked in G and facial with respect to
some plane embedding of G. By a slight abuse of notation, we also call the graph G
an m–n-mesh if there exist two such facial cycles with respect to some embedding. It
is easy to see that n-m-meshes exist for all m and n, for instance we may start with a
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M1

M2

Figure 7: Construction of the graph M(5). The bold cycles are (from the centre to the
outer cycle) C1, C

′
1, C

′
2, and C2.

The cycle C2 bounding the outer face in this drawing is the boundary, the
cycles bounding the faces between M1 and M2 are the attachment cycles.

Cartesian product CN�PN where N is much larger than n and m and connect cycles of
length n and m to the two facial cycles of length N in an appropriate way.

For every n ∈ N, let (M1, C1, C
′
1) and (M2, C2, C

′
2) be two (2n)-(n2)-meshes. De-

note the facial sequences of the well linked cycles by Ci = (v1,i, . . . , v2n,i) and C ′i =
(v′1,i, . . . , v

′
n2,i). Let M(n) be the graph obtained by adding an additional vertex z, con-

necting z to every vertex of C1, and adding edges between v′kn,1 and v′kn,2 for 1 ≤ k ≤ n,
see Figure 7. We call M1 the inner mesh, M2 the outer mesh, and z the centre of M(n).
The cycles C ′1 and C ′2 are called the inner perimeter and outer perimeter, respectively,
and C2 is called the boundary of M(n). The edges connecting the outer perimeter to the
inner perimeter are called the spokes of M(n). Moreover, the n cycles of length 2n+ 2
consisting of a path of length n on C ′1, a path of length n on C ′2, and the two spokes
connecting the endpoints of these paths are called the attachment cycles of M(n). Note
that M(n) has a plane embedding such that the boundary of M(n) and all attachment
cycles are facial cycles.

Using these graphs, we construct a graph G recursively as follows. In each iteration,
we have a graph G(n) and a set Cn of pairwise disjoint facial cycles with respect to some
embedding of G(n) such that each C ∈ Cn has length 2(n+ 1).

We start the inductive construction by letting G1 be a cycle of length 4, and choosing
C1 as the set consisting of this cycle. In each subsequent step, for each cycle C ∈ Cn we
take a copy of M(n + 1) and identify its boundary with C as indicated in Remark 4.1.
Note that apart from the boundaries, all facial cycles in all copies of M(n + 1) are
facial cycles of G(n + 1); in particular, all attachment cycles are facial cycles of length
2(n+2). Let the set Cn+1 consist of all attachment cycles of all copies of M(n+1). Define
G = limn→∞G(n). This graph is planar by Theorem 2.1 since every finite subgraph of
G is a subgraph of some G(n) and planarity is preserved under taking subgraphs.
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Note that the above construction is not unique (even when M(n) is fixed for every n)
since there are different, non-isomorphic ways of identifying the facial cycles. However,
this non-uniqueness will not be an issue; we will show that any choice leads to a universal
planar graph with respect to the topological minor relation.

Theorem 4.2. Any connected, locally finite, planar graph has a G-embedding.

Proof. LetG be a connected, locally finite, planar graph, and letH be the graph obtained
from G by subdividing every edge. Clearly, any G-embedding of H gives rise to a G-
embedding of G; the path corresponding to an edge e ∈ E(G) is simply the union of
the two paths corresponding to the edges obtained by subdividing e. In particular, it
suffices to show that H has a G-embedding.

We partition the vertices of H into original vertices, that is, vertices corresponding
to vertices of H, and subdivision vertices, that is, vertices added to subdivide an edge.
Any subdivision vertex has precisely two neighbours both of which are original, and any
original vertex only has subdivision neighbours.

Let (vn)n∈N be an enumeration of the original vertices such that the subgraph of G
induced by the vertices corresponding to v1, . . . , vn is connected for every n ∈ N. Let
Vn = {vk | k ≤ n}. Let Hn be the subgraph of H induced by Vn and all neighbours of
Vn. Let H ′n be the be the subgraph of H induced by Vn and all subdivision vertices both
of whose neighbours are in Vn. Subdivision vertices with exactly one neighbour in Vn
are called loose ends of Hn, they have degree 1 in Hn and are the only vertices of Hn

which are not contained in H ′n. Note that all graphs Hn and H ′n are connected by our
choice of the enumeration (vn).

Since G is planar, so is H; for the remainder of the proof we fix an arbitrary plane em-
bedding ι of H. Restricting this embedding to Hn or H ′n clearly gives plane embeddings
for all n ∈ N, by a slight abuse of notation we denote these embeddings by ι as well.
When referring to faces of Hn or faces of H ′n we tacitly assume that these are faces with
respect to the embedding ι. We say that a loose end v of Hn belongs to a face F of Hn if
ι(v) is contained in the closure of F . Note that any loose end belongs to exactly one face
since it has degree 1 and thus it has a neighbourhood whose intersection with R2 \ ι(Hn)
is connected. Further note that any loose end appears precisely once in the boundary
sequence of the face it belongs to. Denote by L(F ) the set of loose ends belonging to
the face F .

We now inductively construct G(m)-embeddings of Hn for appropriate choices of m
and n. Call a G(m)-embedding φ of Hn good if there is an injective map assigning to
each face F of Hn a cycle CF ∈ Cm such that the restriction of φ to L(F ) is an order
preserving injection from L(F ) to CF (with respect to the cyclic orders given by the
boundary sequence of F and CF , respectively).

Our inductive construction rests on the following two claims whose proofs are fairly
straightforward. Let φ be a good G(m)-embedding of Hn and assume that Hn has at
most m loose ends.

Claim 1. There is a good G(m+ 1)-embedding ψ of Hn such that φ and ψ agree on H ′n
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φ(l)

ψ(l)

Figure 8: Sketch of the constructions used to prove Claims 1 and 2.

Claim 2. If Hn+1 has at most m loose ends, then there is a good G(m+ 1)-embedding
ψ of Hn+1 such that φ and ψ agree on H ′n.

Before proving the two claims, we show that they can be applied inductively to obtain
a sequence of embeddings of H ′n into G satisfying the conditions of Lemma 2.3, thereby
finishing the proof of Theorem 4.2.

For the base case, note that H1 is a star with centre v1 where all leaves are loose
ends. For any m ≥ deg(v1), by choosing an appropriate linkage in the inner mesh we
can construct a M(m)-embedding of H1 mapping v1 to the centre of M(m) and all loose
ends to vertices on the same attachment cycle of M(m). Viewing M(m) as a subgraph
of G(m) this defines a good G(m)-embedding of H1.

For the inductive step assume that we have a good M(m)-embedding of Hn, and that
the number of loose ends of Hn is at most m. We can recursively apply Claim 1 to get
a good M(m′)-embedding of Hn where m′ ≥ m is at least as big as the number of loose
ends of Hn+1, and then apply Claim 2 to obtain a good M(m′)-embedding of Hn+1.

It remains to prove the two claims. In both claims, for any vertex or edge x of H ′n, we
must have ψ(x) = φ(x). Thus the maps φ and ψ in the above claims only differ in the
embeddings of the loose ends, their incident edges, and potentially the additional vertex
vn+1 and its incident edges. We refer to Figure 8 for a sketch of how the embeddings of
loose ends and their incident edges are extended into the copies of M(m+ 1) that were
added in the construction of G(m+ 1) from G(m).

For a formal proof, consider the following setup. Let F be an arbitrary face of Hn.
As before, denote by L(F ) the loose ends belonging to F , and for l ∈ L(F ) let el be
the unique edge incident to l. Let MF be the copy of M(m + 1) whose boundary was
identified with CF in the construction of G(m+ 1). Consider φ(L(F )) as vertices on the
boundary of MF , ignoring the embedding of the rest of Hn. Recall that the boundary
was identified with CF using an order reversing bijection, so the restriction of φ to L(F )
is an order reversing injection from L(F ) to the boundary of MF .
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For the proof of Claim 1 we apply the following construction for each face F of Hn,
see the left half of Figure 8. Pick an arbitrary attachment cycle C ′F of MF . Let Y
be the set of vertices on C ′F which are contained in the outer mesh of MF ; note that
|Y | = m + 2 ≥ |L(F )|. Let ξ : φ(L(F )) → Y be an order reversing injection. Since MF

is a mesh, we can find a ξ-linkage in the outer mesh of MF whose paths intersect the
boundary of MF only in their endpoints. Note that since the image of ξ is contained in
Y ⊆ C ′F , the paths in this linkage connect φ(L(F )) to C ′F .

Let ψ(el) be the concatenation of φ(el) and the φ(l)–ξ(φ(l))-path in this linkage, let
ψ(l) = ξ(φ(l)), and let ψ(x) = φ(x) for every vertex or edge x of H ′n. It is easy to
check that ψ is a G(m + 1)-embedding of Hn. By construction, the images of all loose
ends belonging to F lie on C ′F . Moreover, the cyclic orders of the φ(vi) on CF and
the ψ(xi) on C ′F coincide since the composition of two order reversing maps is an order
preserving map. For any two faces F1 and F2 we have CF1 6= CF2 and thus C ′F1

and C ′F2

are attachment cycles of different copies of M(m+ 1), so the function mapping F to C ′F
is an injection.

Thus ψ is a good G(m + 1)-embedding of Hn which coincides with φ on H ′n. This
proves Claim 1.

For the proof of Claim 2, we first note that any face F of Hn+1 which is not incident
to vn+1 is also a face of Hn. We can thus apply the same construction as above to F to
obtain an attachment cycle of MF in G(m + 1) and an appropriate embedding of the
loose ends belonging to F and their incident edges.

It remains to provide a construction for faces F incident to vn+1. A sketch of this
construction is shown in the right half of Figure 8.

Formally, let F0 be the face of Hn which contains the embedding of vn+1, and let
l1, . . . , lk be an enumeration of the loose ends L(F0), cyclically ordered according to the
boundary sequence of F0. Let i1, . . . , ir be the indices such that lij is incident to vn+1, for
convenience set ir+1 = i1. Let B(F0) be the boundary sequence of F0 and let Bj(F0) be
the part of B(F0) strictly between lij and lij+1 ; if vn+1 is incident to a unique l ∈ L(F0),
then B1(F0) is the whole boundary sequence without l, cyclically permuted so it starts
with the successor of l. Clearly, Bj(F0) contains at most |L(F0)|−1 vertices, all of which
are loose ends belonging to the same face of Hn+1. For j 6= j′, the loose ends in Bj(F0)
and Bj′(F0) belong to different faces of Hn+1.

Let Y be the set of vertices in the outer perimeter of MF0 in clockwise cyclic order
(that is, we consider the outer perimeter as a face of the outer mesh). Pick an order
reversing injection ξ : φ(L(F0)) → Y such that every φ(lij ) is incident to a spoke, and
the image of each Bj(F0) is completely contained in an attachment cycle Cj . This is
possible, because MF0 has at least m ≥ |L(F0)| spokes, and between any two spokes we
can find m− 1 ≥ |L(F0)| − 1 vertices belonging to the same attachment cycle.

Next, let N be the set of neighbours of vn+1 in Hn+1. Going around ι(vn+1) in
clockwise direction defines a cyclic order on N . The restriction of this cyclic order to the
vertices lij agrees with the restriction of the boundary sequence of F0 to these vertices,
otherwise the embedding would not be planar. Let Z be the set of vertices on the inner
perimeter of MF0 in clockwise cyclic order. Note that every neighbour of v0 in Hn+1 is
either a loose end of Hn, or a loose end of Hn+1. Thus N consists of at most 2m vertices,
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at most m of which are loose ends of Hn+1. Hence we can find an order preserving map
η : N → Z such that η(lij ) is joined to ξ(φ(lij )) by a spoke, and the vertices between lij
and lij+1 are all mapped to the attachment cycle Cj defined above.

Now define the embedding ψ as follows. Let ψ(vn+1) be the centre z of MF0 . For x ∈ N
let ψ(x) = η(x). Disjoint z–η(x)-paths for the images ψ(vn+1x) can be constructed from
a linkage between η(N) and the neighbours of z. Such a linkage exists in the inner
mesh of MF0 because vn+1 has N < |L(F0)| + |{loose ends of Hn+1}| ≤ 2m neighbours
in Hn+1, so there is an injection from η(N) to the cycle consisting of the neighbours of
z. Next fix a ξ-linkage in the outer mesh of MF0 whose paths intersect the boundary
of MF0 only in their endpoints. For l ∈ L(F0) \ N we set ψ(l) = ξ(φ(l)) and let ψ(el)
be the concatenation of φ(el) with the φ(l)–ξ(φ(l))-path in this linkage. For l ∈ N , let
ψ(el) be the concatenation of φ(el) with the φ(l)–ξ(φ(l))-path in this linkage and the
incident spoke of MF0 ; note that ψ(l) = η(l) is the other endpoint of this spoke. Finally,
let ψ(x) = φ(x) for every vertex or edge x of H ′n.

This clearly gives a G(m+ 1)-embedding of Hn+1. By definition, φ and ψ coincide on
H ′n. To see that ψ is a good embedding, note that the boundary sequence of each face
F of Hn+1 incident to vn+1 has the form

lij , Bj(F0), lij+1 , vn+1, l
′
1, vn+1, l

′
2, vn+1 . . . vn+1l

′
s

for some s ≥ 0, where l′1, . . . , l
′
s is the reversal of (possibly empty) sequence of neighbours

of vn+1 appearing between lij and lij+1 in the cyclic order. The order of the loose ends
in this sequence coincides with the cyclic order of their embeddings on the cycle Cj .

Theorem 1.3 is now an easy consequence of the above result and Theorem 2.2.

Proof of Theorem 1.3. Let G be the disjoint union of the following graphs:

1. countably many copies of G,

2. continuum many copies of the cycle Ck for every k ∈ N,

3. continuum many double rays.

This graph is planar by Theorem 2.2, and it is locally finite since all of the constituent
graphs are locally finite.

If H is a locally finite planar graph, then by Theorem 2.2 there are at most countably
many components of H containing a vertex of degree 3 or more. Each such component
can be embedded into a different copy of G in G. There are at most continuum many
other components all of which are either cycles or (possibly infinite) paths. Each of these
components can be embedded into a different copy of some cycle Ck or double ray.

Remark 4.3. Theorem 4.2 shows that the class of connected locally finite planar graphs
also contains a universal element with respect to the topological minor relation. The
above proof of Theorem 1.3 can be easily adapted to yield the same conclusion for the
class of countable, locally finite planar graphs.
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Remark 4.4. The construction of G can be modified to give a graph with maximum
degree d for any d ≥ 3. The graphs M(n) can be built in a way that every vertex except
the centre has degree at most 3 (replace vertices of higher degree by appropriate cycles)
and the centre has degree d (do not connect it to all vertices on the cycle of length 2n).
Using this modified construction, it is straightforward to check that the above proof
shows that for every d ∈ N, the class of planar graphs with maximum degree at most
d contains a universal graph with respect to the topological minor relation (the cases
d ≤ 2 are trivial), and the same is true for the class of such graphs which are connected.
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