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Abstract

Context-free grammars are not able to model cross-serial dependencies in nat-

ural languages. To overcome this issue, Seki et al. introduced a generalization

called m-multiple context-free grammars (m-MCFGs), which deal with m-tuples of

strings. We show that m-MCFGs are capable of comparing the number of con-

secutive occurrences of at most 2m different letters. In particular, the language

{an1
1 an2

2 . . . a
n2m+1

k | n1 ≥ n2 ≥ · · · ≥ n2m+1 ≥ 0} is (m + 1)-multiple context-free,

but not m-multiple context-free.

1 Introduction

The main objective of formal language theory is to use mathematical tools to study
the syntactical aspects of natural languages. While context-free grammars (CFGs) have
convenient generative properties, they are not able to model cross-serial dependencies,
which occur in Swiss German and a few other natural languages. On the other hand the
expressive power of context-sensitive grammars (CSGs) exceeds our requirements and
the deciding problem, whether a given string belongs to the language generated by such
a grammar is PSPACE-complete. To overcome this problem Vijay-Shanker et al. [6]
and Seki et al. [5] independently developed the concepts of linear context-free rewriting
systems (LCFRS) and multiple context-free grammars (MCFGs), which are equivalent in
the sense that they both generate the class of multiple context-free languages (MCFLs).
While MCFGs are able to model cross-serial dependencies by dealing with tuples of
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strings, the languages generated by them retain important properties of CFLs, such as
polynomial time parsability and semi-linearity.

MCFLs can be distinguished depending on the largest dimension m of tuples involved
to obtain m-MCFLs, which form an infinite strictly increasing hierarchy

CFL = 1-MCFL ( 2-MCFL ( . . . ( m-MCFL ( (m+ 1)-MCFL ( . . . ( CSL.

A highlight in the theory of MCFGs is the result by Salvati [4], who showed that
the language O2 = {w ∈ {a, ā, b, b̄}∗ | |w|a = |w|ā ∧ |w|b = |w|b̄} occurring as the word
problem of the group Z2 is a 2-MCFL. Moreover the language MIX = {w ∈ {a, b, c}∗ |
|w|a = |w|b = |w|c} is rationally equivalent to O2 and thus also a 2-MCFL. Ho [1]
generalized this result by showing that for any positive integer d the word problem of
Zd is multiple context-free.

Our interest lies in languages where multiple comparisons between counts of consecu-
tive identical letters are necessary. In particular, we consider languages of the form

Lk = {an1
1 an2

2 . . . ank
k | n1 ≥ n2 ≥ · · · ≥ nk ≥ 0}

and generalisations thereof. Note that L1 and L2 are easily seen to be context-free, and
it is a standard exercise to show that L3 is not context-free by using the pumping lemma
for CFLs. Our main result generalises these observations.

Theorem 1.1. The language Lk = {an1
1 an2

2 . . . ank
k | n1 ≥ n2 ≥ · · · ≥ nk ≥ 0} is in

dk/2e-MCFL but not in (dk/2e − 1)-MCFL.

The first part of Theorem 1.1 is verified by constructing an appropriate grammar. For
the second part, one might hope that it is implied by a suitable generalisation of the
pumping lemma to m-MCFLs, but unfortunately such a generalisation does not exist.

A weak pumping lemma for m-MCFLs due to Seki et al. [5] which generalises
pumpability of words to m-pumpability only confirms the existence of m-pumpable
strings in infinite m-MCFLs and not that all but finitely many words in the language
are m-pumpable. In particular, it is not strong enough to imply the second part of
Theorem 1.1. While Kanazawa [2] managed to prove a strong version of the pumping
lemma for the sub-class of well-nested m-MCFLs, Kanazawa et al. [3] showed that
in fact such a pumping lemma cannot exist for general m-MCFLs by giving a 3-MCFL
containing infinitely many words which are not k-pumpable for any given k. Neverthe-
less, our proof relies heavily on the idea of pumping thus showing that this technique
can be useful even in cases where it does not yield a strong pumping lemma.

2 Definitions and notation

For an alphabet (finite set of letters) Σ we denote by

Σ∗ = {w = a1a2 . . . an | n ≥ 0, ai ∈ Σ}
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the set of all words over Σ. Here |w| = n denotes the length of w and we write ε for the
word of length zero. The word consisting of n times the letter a is denoted by an. A
formal language over Σ is a subset of Σ∗.

In this paper we focus on languages defined as follows. A binary relation � on a set
M is called a preorder, if it is reflexive and transitive. In contrast to partial orders,
preorders need not be antisymmetric, that is, it is possible that a � b and b � a for
different elements a, b. A preorder � is called total if for all a, b ∈ M we have a � b
or b � a. The comparability graph of a preorder is the simple undirected graph with
vertex set M , where two different vertices u and v are connected by an edge if they are
comparable. We call a preorder connected, if its comparability graph is connected. Note
that any total preorder is connected, but a connected preorder does not have to be total.

For a positive integer m and a preorder � on [m] := {1, 2, . . . ,m} define the language
L� over the alphabet Σ = {a1, . . . , am} by

L� = {an1
1 an2

2 . . . anm
m | i � j ⇒ ni ≤ nj}.

A preorder �′ on M is said to be a totalisation of a preorder � on M , if it is total and
extends �, that is, whenever a � b also a �′ b. Let T� be the set of totalisations of �.

Remark 2.1. Observe that

L� =
⋃
�′∈T�

L�′ .

This is a consequence of the fact that for any given word w = an1
1 an2

2 . . . anm
m ∈ L�, the

binary relation �′ on [m] defined by i �′ j if and only if ni ≤ nj is a totalisation of �.

A natural way of specifying a language is by giving a grammar which generates it.
Here we focus on multiple context-free languages and the grammars generating them.

Let Σ be an alphabet and N be a finite ranked set of non-terminals, i.e. a finite disjoint
union N =

⋃
r∈N N(r) of finite sets N(r), whose elements are called non-terminals of rank

r. A production rule ρ over (N,Σ) is an expression

A(α1, . . . , αr)← A1(x1,1, . . . , x1,r1), . . . , An(xn,1, . . . , xn,rn),

where

(i) n ≥ 0,

(ii) A ∈ N(r) and Ai ∈ N (ri) for all i ∈ [1, n],

(iii) xi,j are variables,

(iv) α1, . . . , αr are strings over Σ ∪ {xi,j | i ∈ [n], j ∈ [ri]}, such that each xi,j occurs
at most once in α1 . . . αr.

Production rules with n = 0 are called terminating rules.
For A ∈ N(r) and words w1, . . . , wr ∈ Σ∗ we call A(w1, . . . , wr) a term. Let ρ be a pro-

duction rule as above. The application of ρ to a sequence of n terms (Ai(wi,1, . . . , wi,ri))i∈[n]
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yields the term A(w1, . . . , wr), where wl is obtained from αl by substituting every vari-
able xi,j by the word wi,j for l ∈ [r].

A multiple context-free grammar is a quadruple G = (N,Σ,P, S), where N is a finite
ranked set of non-terminals, Σ is an alphabet, P is a finite set of production rules
over (N,Σ) and S ∈ N(1) is the start symbol. We call G m-multiple context-free or a
m-MCFG, if the rank of all non-terminals is at most m.

We call a term T derivable in G and write ` T if there is a rule ρ and a sequence
of derivable terms A such that the application of ρ to A yields T . Note that if ρ =
A(w1, . . . , wr)← is a terminating rule then A is the empty sequence and thus the term
A(w1, . . . , wr) is derivable.

The language generated by G is the set L(G) = {w ∈ Σ∗ | ` S(w)}. We call a language
m-multiple context-free or an m-MCFL, if it is generated by an m-MCFG.

By the following lemma it is enough to consider MCFGs in a certain normal form.

Lemma 2.2 (Seki et al. [5, Lem. 2.2]). Every m-MCFL is generated by an m-MCFG

satisfying the following conditions.

(i) If A(α1, . . . , αr)← A1(x1,1, . . . , x1,r1), . . . , An(xn,1, . . . , xn,rn) is a non-terminating

rule, then the string α1 . . . αr contains each xi,j exactly once and does not contain

elements of Σ.

(ii) If A(w1, . . . , wr)← is a terminating rule, then the string w1 . . . wr contains exactly

one letter of Σ.

A rooted tree T is a tree with a designated root vertex. A vertex u of T is called a
descendant of a vertex v if v lies on the unique shortest path from u to the root of T .
A descendent of v which is adjacent to v is called a child of v. A rooted tree is called
ordered, if an ordering is specified for the children of each vertex. If v is a vertex in T ,
the subtree rooted at v is the subgraph of T consisting of v and its descendants and all
edges incident to these descendants.

Derivation trees for multiple context-free languages were first defined by Seki et
al. [5], we will use a slight variation. Let G = (N,Σ,P, S) be a MCFG. An ordered
rooted tree D whose vertices are labelled with elements of P is a derivation tree of a
term T , if it has the following form.

(i) The root of D has n ≥ 0 children and is labelled with a rule ρ ∈ P.

(ii) For i ∈ [n] the subtree Di rooted at the i-th child of the root of D is a derivation
tree of a term Ti.

(iii) The rule ρ applied to the sequence (Ti)i∈[n] yields T .

It is not hard to see that ` A(w1, . . . , wr) if and only if there is a derivation tree D
of A(w1, . . . , wr). However, in general such a derivation tree need not be unique. We
denote by `(D) the label of the root of D.
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Remark 2.3. Let D be a derivation tree and let v be a vertex of D. Then replacing

the subtree D′ of D rooted at v by a derivation tree D′′ with `(D′′) = `(D′) yields a

derivation tree.

3 Main result

Our main result consists of Theorem 3.1 and Theorem 3.2, which together imply The-
orem 1.1. Note that in fact the results here are more general and cover the class of
languages L� as introduced in the previous section.

Theorem 3.1. For every preorder � the language L� = {an1
1 an2

2 . . . anm
m | i � j ⇒ ni ≤

nj} over the alphabet Σ = {a1, . . . , am} is dm/2e-MCF.

Proof. It is well known [5] that the class of k-MCFLs is a full AFL, in particular it is

closed under substitution and taking finite unions. Thus it is enough to consider the case

where m = 2k is even, the case m = 2k−1 follows by substituting ε for a2k. Additionally,

by Remark 2.1 we may assume that � is a total preorder.

We show that L� is generated by the k-MCFG G = (N = {S,A},Σ,P, S), where A

has rank k and P consists of the rules

S(x1x2 . . . xk)← A(x1, x2, . . . , xk)

A(ε, ε, . . . , ε)←

and for every j ∈ [2k] the additional rule ρj given by

A(y1x1y2, y3x2y4, . . . , y2n−1xny2n)← A(x1, x2, . . . , xn),

where

yi =

{
ai if j � i,
ε otherwise.

Note that if ` A(w1, . . . , wk) holds, then wl has the form wl = a
n2l−1

2l−1 a
n2l
2l with ni ≤ nj

whenever i � j. This is clearly true for A(ε, ε, . . . , ε) and it is preserved when applying

the rule ρj , which adds one instance of the letter aj and every letter ai with j � i. In

particular every word w generated by G is the concatenation w1 . . . wk of strings wl such

that ` A(w1, . . . , wk) and thus w is in L�.

Next we show that any given word in L� is generated by G. Assume for a contradiction

that there is a word in L� which is not generated by G and pick w = an1
1 an2

2 . . . an2k
2k ∈ L�

such that nmax = max{nl | l ∈ [2k]} is minimal. Clearly w 6= ε because G generates

the empty word, so in particular nmax ≥ 1. For l ∈ [2k] let n′l = nl if nl < nmax

and let n′l = nmax − 1 otherwise. Since w ∈ L�, it follows that n′i ≤ n′j whenever

i � j and thus w′ = a
n′1
1 a

n′2
2 . . . a

n′2k
2k ∈ L�. Observe that ` A(a

n′1
1 a

n′2
2 , . . . , a

n′2k−1

2k−1 a
n′2k
2k )
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because by minimality of w the word w′ is generated by G. Pick j minimal with respect

to � in {l ∈ [2k] | nl = nmax}. Then applying ρj to A(a
n′1
1 a

n′2
2 , . . . , a

n′2k−1

2k−1 a
n′2k
2k ) yields

` A(an1
1 an2

2 , . . . , a
n2k−1

2k−1 a
n2k
2k ) and thus G generates w, contradicting our assumption.

Theorem 3.2. For every connected preorder � the language L� = {an1
1 an2

2 . . . anm
m | i �

j ⇒ ni ≤ nj} over the alphabet Σ = {a1, . . . , am} is not (dm/2e − 1)-MCF.

Proof. Let G = (N,Σ,P, S) be a MCFG generating L� given in normal form as in

Lemma 2.2.

For a derivation tree D and i ∈ [m] denote by |D|i the total number of letters ai
occurring in all substrings contained in the term `(D) and by |D| =

∑m
i=1 |D|i the

combined length of all substrings. Since G is in normal form, if `(D) is not a terminating

rule and D1, . . . , Dk are the derivation trees rooted at the k children of the root of D we

have

(1) |D|i =
k∑

j=1

|Dj |i .

Moreover, if `(D) is a terminating rule, then

(2) |D| = 1.

Call a rule a combiner, if its right hand side contains at least 2 non-terminals and

therefore a vertex of any derivation tree labelled by ρ has at least 2 children. Note that

there is an upper bound K such that the right hand side of any combiner contains at

most K non-terminals.

Fix n > K2C , where C is the number of combiners in P and let D be a derivation tree

of S(an1a
n
2 . . . a

n
m). Then D contains a path starting at the root containing at least 2C+1

vertices labelled with combiners. If not, then (1) and (2) imply |D| ≤ K2C , contradicting

our choice of n. In particular the path contains at least 3 vertices labelled with the same

combiner ρ. Denote the subtrees rooted at these three vertices by D1, D2, D3 where

D3 ⊆ D2 ⊆ D1.

We claim that for any i � j we have |D1|j − |D2|j = |D1|i − |D2|i and the analogous

statement for D2 and D3.

Assume that |D1|j − |D2|j > |D1|i − |D2|i. By (1) the derivation tree D′ obtained by

replacing D1 by D2 (compare Remark 2.3) satisfies∣∣D′∣∣
j
−
∣∣D′∣∣

i
= |D|j − (|D1|j − |D2|j)− |D|i + (|D1|i − |D2|i) < 0,

because |D|j = |D|i = n. This is a contradiction, as the word w(D′) is not in L�. If

|D1|j − |D2|j < |D1|i − |D2|i, then the derivation tree D′′ obtained by replacing D2 by

D1 satisfies∣∣D′′∣∣
j
−
∣∣D′′∣∣

i
= |D|j + (|D1|j − |D2|j)− |D|i − (|D1|i − |D2|i) < 0,
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Figure 1: Replacing D1 with D2 yields D′ and replacing D2 with D1 yields D′′.

which is a contradiction for the same reason as before thus completing the proof of our

claim.

If i, j ∈ [m] are comparable in �, then |D1|j−|D1|i = |D2|j−|D2|i. By connectedness

of the comparability graph this is true for any pair i, j.

Since ρ is a combiner, |w(D1)| > |w(D2)|. In particular |D1|i > |D2|i for some and

thus for every i ∈ [m]. Analogously we obtain |D2|i > |D3|i and in particular |D2|i > 0

for every i ∈ [m].

Assume the Grammar G is (dm/2e−1)-MCF. Then w(D2) consists of at most dm/2e−1

strings and each of them a substring of an1a
n
2 . . . a

n
m because G is in normal form. Every

letter of Σ appears in w(D2), hence one of the strings must contain at least 3 different

letters and thus be of the form an1
i−1a

n
i a

n2
i+1 for some i ∈ {2, . . . ,m− 1}. This contradicts

the fact that n ≥ |D1|i > |D2|i = n, so G must be at least dm/2e-MCF.
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