
Fast Factorization of Cartesian products of (Directed) Hypergraphs

Marc Hellmutha,b,, Florian Lehnerc

aDepartment of Mathematics and Computer Science, University of Greifswald, Walther-Rathenau-Straße 47, 17487 Greifswald, Germany
bCenter for Bioinformatics, Saarland University, Building E 2.1, Room 413, P.O. Box 15 11 50, D-66041 Saarbrücken, Germany

cDepartment of Mathematics, University of Hamburg, Bundesstraße 55, 20146 Hamburg. Germany

Abstract

Cartesian products of graphs and hypergraphs have been studied since the 1960s. For (un)directed hypergraphs,

unique prime factor decomposition (PFD) results with respect to the Cartesian product are known. However, there is

still a lack of algorithms, that compute the PFD of directed hypergraphs with respect to the Cartesian product.

In this contribution, we focus on the algorithmic aspects for determining the Cartesian prime factors of a finite,

connected, directed hypergraph and present a first polynomial time algorithm to compute its PFD. In particular, the

algorithm has time complexity O(|E||V |r2) for hypergraphs H = (V, E), where the rank r is the maximum number

of vertices contained in an hyperedge of H. If r is bounded, then this algorithm performs even in O(|E| log2(|V |))

time. Thus, our method additionally improves also the time complexity of PFD-algorithms designed for undirected

hypergraphs that have time complexity O(|E||V |r6∆6), where ∆ is the maximum number of hyperedges a vertex is

contained in.

Keywords: Directed Hypergraph, Cartesian Product, Prime Factor Decomposition, Factorization Algorithm,

2-Section

1. Introduction

Products are a common way in mathematics of constructing larger objects from smaller building blocks. For

graphs, hypergraphs, and related set systems several types of products have been investigated, see [18, 14] for recent

overviews.

In this contribution we will focus on the Cartesian product of directed hypergraphs that are the common gen-

eralization of both directed graphs and (undirected) hypergraphs. In particular, we present a fast and conceptually

very simple algorithm to find the decomposition of directed hypergraphs into prime hypergraphs (its so-called prime

factors), where a (hyper)graph is called prime if it cannot be presented as the product of two nontrivial (hyper)graphs,

that is, as the product of two (hyper)graphs with at least two vertices.

Graphs and the Cartesian Product. A graph is a tuple G = (V, E) with non-empty set of vertices V and a set of

edges E containing two-element subsets of V . If the edges are ordered pairs, then G is called directed and undirected,

otherwise. The Cartesian graph product was introduced by Gert Sabidussi [26]. As noted by Szamkołowicz [29]

also Shapiro introduced a notion of Cartesian products of graphs in [27]. Sabidussi and independently V.G. Vizing

[30] showed that connected undirected graphs have a representation as the Cartesian product of prime graphs that is

unique up to the order and isomorphisms of the factors. The question whether one can find the prime factorization

of connected undirected graphs in polynomial time was answered about two decades later by Feigenbaum et al. [13]

who presented an O(|V |4.5) time algorithm. From then on, a couple of factorization algorithms for undirected graphs

have been developed [1, 11, 13, 21, 31]. The fastest one is due to Imrich and Peterin [21] and runs in linear-time

O(|V | + |E|).

For connected directed graphs, Feigenbaum showed that the Cartesian product satisfies the unique prime factor-

ization property [12]. Additionally, she provided a polynomial-time algorithm to determine the prime factors which

was improved to a linear time approach by Crespelle et al. [9].

Email addresses: mhellmuth@mailbox.org (Marc Hellmuth), mail@florian-lehner.net (Florian Lehner)

Preprint submitted to Elsevier August 28, 2015



Hypergraphs and the Cartesian Product. Hypergraphs are a natural generalization of graphs in which “edges” may

consist of more than two vertices. More precisely, a hypergraph is a tuple H = (V, E) with non-empty set of vertices

V and a set of hyperedges E, where each e ∈ E is an ordered pair of non-empty sets of vertices e = (t(e), h(e)). If

t(e) = h(e) for all e ∈ E the hypergraph is called undirected and directed, otherwise. Products of hypergraphs have

been investigated by several authors since the 1960s [2, 3, 5, 6, 7, 8, 10, 16, 19, 20, 22, 23, 25, 28, 32]. It was shown

by Imrich [19] that connected undirected hypergraphs have a unique prime factor decomposition (PFD) w.r.t. to the

Cartesian product, up to isomorphism and the order of the factors. A first polynomial-time factorization algorithm for

undirected hypergraphs was proposed by Bretto et al. [8].

Unique prime factorization properties for directed hypergraphs were derived by Ostermeier et al. [25]. However,

up to our knowledge, no algorithm to determine the Cartesian prime factors of a connected directed hypergraph is

established, so-far.

Summary of the Results. In this contribution, we present an algorithm to compute the PFD of connected directed hy-

pergraphs in O(|V ||E|r2) time, where the rank r denotes the maximum number of vertices contained in the hyperedges.

In addition, if we assume to have hypergraphs with bounded rank the algorithm runs in O(|E| log2(|V |)) time. Note, as

directed hypergraphs are a natural generalization of undirected hypergraphs, our method generalizes and significantly

improves the time-complexity of the method by Bretto et al. [8]. In fact, the algorithm of Bretto et al. has time com-

plexity O(|V ||E|∆6r6), where ∆ is the maximum number of hyperedges a vertex is contained in. Assuming that given

hypergraphs have bounded rank r and bounded maximum degree ∆ this algorithm runs therefore in O(|V ||E|) time.

We shortly outline our method. Given an arbitrary connected directed hypergraph H = (V, E) we first compute

its so-called 2-section [H]2, that is, roughly spoken the underlying undirected graph of H. This allows us to use the

algorithm of Imrich and Peterin [21] in order to compute the PFD of [H]2 w.r.t. the Cartesian graph product. As we

will show, this provides enough information to compute the Cartesian prime factors of the directed hypergraph H. In

distinction from the method of Bretto et al. our algorithm is in a sense conceptually simpler, as (1) we do not need the

transformation of the hypergraph H into its so-called L2-section and back, where the L2-section is is an edge-labeled

version of the 2-section [H]2, and (2) the test which (collections) of the factors of the 2-section are prime factors

of H follows a complete new idea based on increments of fixed vertex-coordinate positions, that allows an easy and

efficient check to determine the PFD of H.

2. Preliminaries

2.1. Basic Definitions

A directed hypergraph H = (V, E) consists of a finite vertex set V(H) := V and a set of directed hyperedges or

(hyper)arcs E(H) := E. Each arc e ∈ E is an ordered pair of non-empty sets of vertices e = (t(e), h(e)). The sets

t(e) ⊆ V and h(e) ⊆ V are called the tail and head of e, respectively. The set of vertices, that are contained in an arc

will be denoted by V(e) := t(e)∪h(e). If t(e) = h(e) holds for all e ∈ E, we identify e with V(e), and we call H = (V, E)

an undirected hypergraph. An undirected hypergraph is an undirected graph if |V(e))| = 2 for all e ∈ E. The elements

of E are called simply edges, if we consider an undirected graph. The hypergraph with |V | = 1 and E = ∅ is denoted

by K1 and is called trivial.

Throughout this contribution, we only consider hypergraphs without multiple hyperedges and thus, being E a

usual set, and without loops, that is, |V(e)| > 1 holds for all e ∈ E. However, we allow to have hyperedges being

properly contained in other ones, i.e., we might have arcs e, f ∈ E with t(e) ⊆ t( f ) and h(e) ⊆ h( f ).

A partial hypergraph or sub-hypergraph H′ = (V ′, E′) of a hypergraph H = (V, E), denoted by H′ ⊆ H, is a

hypergraph such that V ′ ⊆ V and E′ ⊆ E. The partial hypergraph H′ = (V ′, E′) is induced (by V ′) if E′ = {e ∈ E |

V(e) ⊆ V ′}. Induced hypergraphs will be denoted by 〈V ′〉.

A weak path P (joining the vertices v0, vk ∈ V) in a hypergraph H = (V, E) is a sequence P =

(v0, e1, v1, e2, . . . , ek, vk) of distinct vertices and arcs of H, such that v0 ∈ V(e1), vk ∈ V(ek) and v j ∈ V(e j)∩V(e j+1). A

hypergraph H is said to be weakly connected or simply connected for short, if any two vertices of H can be joined by

a weak path. A connected component of a hypergraph H is a connected sub-hypergraph H′ ⊆ H that is maximal w.r.t.

inclusion, i.e., there is no other connected sub-hypergraph H′′ ⊆ H with H′ ( H′′. Usually, we identify connected

components H′ = (V ′, E′) of H simply by their vertex set V ′, since 〈V ′〉 = H′.

2



A homomorphism from H1 = (V1, E1) into H2 = (V2, E2) is a mapping φ : V1 → V2 such that φ(e) is an arc in H2

whenever e is an arc in H1 with the property that φ(t(e)) = t(φ(e)) and φ(h(e)) = h(φ(e)). A bijective homomorphism

φ whose inverse function is also a homomorphism is called an isomorphism.

The rank of a hypergraph H = (V, E) is r(H) = maxe∈E |V(e)|.

The 2-section [H]2 of a (directed) hypergraph H = (V, E) is the undirected graph (V, E′) with E′ =

{xy := {x, y} ⊆ V | x , y, ∃ e ∈ E : x, y ⊆ V(e)}. In other words, two vertices are linked by an edge in [H]2 if they

belong to the same hyperarc in H. Thus, every arc e ∈ E of H is a complete graph in [H]2, i.e., all pairwise different

vertices in V(e) are linked by an edge in [H]2. Complete graphs defined on a vertex set V will be denoted by K|V |.

We will also deal with equivalence relations, for which the following notations are needed. For an equivalence

relations R we write ̺ ⊑ R to indicate that ̺ is an equivalence class of R. A relation Q is finer than a relation R while

the relation R is coarser than Q if (e, f ) ∈ Q implies (e, f ) ∈ R, i.e, Q ⊆ R. In other words, for each class ̺ of R there

is a collection {χ|χ ⊆ ̺} of Q-classes, whose union equals ̺. Equivalently, for all ϕ ⊑ Q and ψ ⊑ R we have either

ϕ ⊆ ψ or ϕ ∩ ψ = ∅.

Remark 1. If not stated differently, we assume that the hypergraphs considered in this contribution are connected.

2.2. The Cartesian Product, (Pre-)Coordinates and (Pre-)Layers

Let H1 and H2 be two hypergraphs. The Cartesian product H = H1�H2 has vertex set V(H) = V(H1) × V(H2),

that is the Cartesian set product of the vertex sets of the factors and the arc set

E(H) =
{
({x} × t( f ), {x} × h( f )) | x ∈ V(H1), f ∈ E(H2)

}
∪

{
(t(e) × {y} , h(e) × {y}) | e ∈ E(H1), y ∈ V(H2)

}
.

Thus, the tuple ({(xi, yi), i ∈ I}, {(x′
j
, y′

j
), j ∈ J}) with xi, x

′
j
∈ V(H1), yi, y

′
j
∈ V(H2), i ∈ I, j ∈ J is an arc in

E(H1�H2) if and only if either

(i) ({xi, i ∈ I}, {x′j, j ∈ J}) is an arc in E(H1) and yi = y′j for all i ∈ I, j ∈ J or

(ii) ({yi, i ∈ I}, {y′j, j ∈ J}) is an arc in E(H2) and xi = x′j for all i ∈ I, j ∈ J.

The Cartesian product is associative, commutative, and the trivial one-vertex hypergraph K1 without arcs serves

as unit [18, 25]. Thus, for arbitrary finitely many factors {Hi, i ∈ I} the product �i∈I Hi is well-defined, and each vertex

x ∈ V(�i∈I Hi) is properly “coordinatized” by the vector (xi)i∈I whose entries are the vertices xi of the factors Hi.

A nontrivial hypergraph H is prime with respect to the Cartesian product if it cannot be represented as the Cartesian

product of two nontrivial hypergraphs. A prime factor decomposition (PFD) of H is a representation as a Cartesian

product H = �i∈I Hi such that all factors Hi, i ∈ I, are prime and Hi ; K1. Note, the number k of prime factors of

H = (V, E) is bounded by log(|V |), since every Cartesian product of k non-trivial hypergraphs has at least 2k vertices.

Two important results concerning the Cartesian products of hypergraphs are given now.

Lemma 2.1 ([25]). The Cartesian product H = �n
i=1

Hi of directed hypergraphs is connected if and only if all of its

factors Hi are connected.

Theorem 2.2 ([25]). Connected (directed) hypergraphs have a unique prime factor decomposition with respect to the

Cartesian product.

We will show, that the PFD of a hypergraph H can be obtained from the PFD of its 2-section [H]2. For this the

following lemma is crucial.

Lemma 2.3. If �i∈I Hi is an arbitrary factorization of H it holds that [H]2 = �i∈I[Hi]2.

Proof. Since the Cartesian product is commutative and associative it suffices to prove the statement for two factors.

Assume that H = H1�H2 and every vertex x has coordinates (x1, x2). Thus, there is an isomorphism φ : V(H) →

V(H1�H2) via x 7→ (x1, x2). We show that φ is also an isomorphism for the graphs [H]2 and [H1]2�[H2]2.

The edge xy is contained in E([H]2) if and only if there is an arc e ∈ E(H) with x, y ∈ V(e) = t(e) ∪ h(e) if

and only if (i) x1 = y1 and x2y2 ⊂ V( f ) ∈ E(H2) or (ii) x2 = y2 and x1y1 ⊂ V( f ) ∈ E(H1) if and only if (i)

x1 = y1 and x2y2 ∈ E([H2]2) or (ii) x2 = y2 and x1y1 ∈ E([H1]2) if and only if the edge φ(x)φ(y) is contained in

E([H1]2�[H2]2).

3



Now, given the PFD of H = �i∈I Hi, we can infer that [H]2 = �i∈I[Hi]2. However, the factors [Hi]2 might

not be prime w.r.t. the Cartesian graph product and hence, [H]2 might have more prime factors. Since the PFD of

[H]2 = � j∈JG j is unique it follows that the 2-section of the prime factors Hi of H is a combination of the prime factors

G j of [H]2, that is, [Hi]2 ≃ � j∈J′G j, J′ ⊆ J for all i ∈ I.

Our algorithm will start with the PFD of [H]2 = � j∈JG j w.r.t. the Cartesian product of undirected graphs and then

tries to combine the respective prime factors of [H]2 to reconstruct the prime factors of H. In other words, we need

to find suitable subsets J′ ⊆ J so that [Hi]2 ≃ � j∈J′G j and Hi is a prime factor of H. To this end, we will introduce

(pre-)coordinates and (pre)-layers.

Definition 2.4 ((Factorization) Coordinatization). Let H be isomorphic to some product �i∈I Hi, where each factor Hi

has vertex set {1, . . . , li}. A factorization coordinatization or coordinatization for short, is an isomorphism Υ from H

to �i∈I Hi. Thus, Υ assigns to a vertex v ∈ V(H) a vector of coordinates (vi)i∈I where 1 ≤ vi ≤ li is a vertex in V(Hi)

Hence, a coordinatization gives in an explicit way the information of the underlying product structure of H.

Hence, to find a factorization of H one can equivalently ask for a coordinatization of H, a fact that we will utilize

in our algorithm. Note that the coordinatization w.r.t. a given product decomposition is unique up to relabeling the

vertices in each factor Hi.

We will also need a notion which is similar to a coordinatization but is implied by a factorization of the 2-section

[H]2 rather than a decomposition of H.

Definition 2.5 (Pre-Coordinatization). Let H be a given hypergraph and assume that [H]2 has a coordinatization

Υ : V([H]2) → ×i∈I{1, . . . , li}. Since V([H]2) = V(H) we infer that Υ is a bijective map on V(H) that assigns to each

vertex v ∈ V(H) a unique coordinate-vector (vi)i∈I where 1 ≤ vi ≤ li. This map is called pre-coordinatization of H.

For convenience, we will usually omit the function Υ and identify every vertex v ∈ V(H) with its (pre-)coordinate

vector, i.e., we will write v = (vi)i∈I rather than Υ(v) = (vi)i∈I .

Definition 2.6 (Layers and Pre-Layers). Let H ≃ �i∈I Hi with given respective coordinatization v = (vi)i∈I ∈ V(H)

and I′ ⊆ I. The I′-layer through v (denoted by Hv
I′

) with respect to this coordinatization is the sub-hypergraph induced

by the vertices {u = (ui)i∈I | i < I′ =⇒ ui = vi}, i.e., we fix all coordinates except those contained in the set I′. Note,

Hv
I′
≃ �i∈I′Hi.

Analogously, as layers are defined by means of a coordinatization define the pre-layers by means of a pre-

coordinatization.

For simplicity we write Hv
i

instead of Hv
{i}

and i-(pre-)layer rather than {i}-(pre-)layers.

For later reference, we need the following observation and lemma. If H ≃ �i∈I Hi and e is an arc of H, then all

vertices in V(e) are contained in the same i-layer Hv
i

for some i ∈ I and v ∈ V(H), i.e. they only differ in the i-th

coordinate. The same is true for pre-layers.

Lemma 2.7. Let H be a hypergraph and let Υ be a pre-coordinatization of H. Then every arc e of H contains vertices

of exactly one pre-layer w.r.t Υ, that is, all vertices in V(e) only differ in the same i-th coordinate.

Proof. Every hyperarc e forms a complete subgraph K|V(e)| in [H]2. Moreover, complete subgraphs must be contained

entirely in one of the i-layers of [H]2, as complete graphs are so-called S-prime graphs, see e.g. [4, 15, 17, 24]. Hence,

each hyperarc is contained in one i-pre-layer of H.

Note, any isomorphism from [H]2 to �i∈I[Hi]2 and thus, a pre-coordinatization of H, is a coordinatization of H if

and only if H has a factorization �i∈I Hi. Lemma 2.3 immediately implies that every coordinatization of H is also a

pre-coordinatization of H, while the converse is not true in general. On the other hand, we have the following result

for so-called increments of coordinates.

Definition 2.8 (Increments of Coordinates). Given a pre-coordinatization Υ : V(H) → ×i∈I{1, . . . , li}, of H and a

vertex v = (v1, . . . , vi, . . . , vk) ∈ V(H) we define inc(v, i) (w.r.t. Υ) as the vertex with coordinates (v1, . . . , vi + 1, . . . , vk)

where we set vi + 1 := 1 if vi + 1 > li.

For an (ordered) set of vertices W ⊂ V we define the (ordered) set inc(W, i)) = {inc(w, i) | w ∈ W}.

Finally, we denote for an arc e = (t(e), h(e)) its increment (inc(t(e), i), inc(h(e), i)) by inc(e, i).

4



Lemma 2.9. Let H = (V, E) be a hypergraph and Υ : V → ×i∈I{1, . . . , li} be a pre-coordinatization of H. If for each

arc e ∈ E (where the vertices of e differ only in the j-th coordinate), there is an arc inc(e, i) ∈ E for all i , j, then Υ

is a coordinatization of H.

Proof. By Lemma 2.7, all vertices within one arc e ∈ E differ in precisely one coordinate. Let e ∈ E be an arbitrary

hyperarc and assume the vertices differ in the j-th coordinate.

Let H j be the set of j-pre-layers contained in H. Let i , j be an arbitrary index i ∈ I. Assume that for each

hyperedge e contained in some j-pre-layer H(1) all “incremental copies” inc(e, i) are also contained in E, then there

is a homomorphism from H(1) = 〈V(H(1))〉 to H(2) = 〈(inc(V(H(1)), i))〉, where H(2) corresponds to some other

j-pre-layer. Assume that for all such “consecutive” j-pre-layer there is a homomorphism from H(l) to H(l + 1),

1 ≤ l ≤ li − 1. By construction, after li − 1 incremental steps we arrive at the li-th j-pre-layer H(li) and hence,

H(1) = 〈(inc(V(H(li)), i))〉. If there is an homomorphism from H(li) to H(1), then there is trivially an isomorphism

between all such j-pre-layers H(1),H(2), . . . ,H(li) ∈ H j. Thus, if for all arcs e ∈ E, where the vertices of e differ

precisely in this j-th coordinate, there is a hyperarc inc(e, i) ∈ E for all i , j, then there isomorphism between all

j-pre-layers contained inH j for this fixed j ∈ I.

If this is true for all arcs e ∈ E, and thus, for all i-pre-layers with i ∈ I, then all such i-pre-layers are isomorphic

for each i ∈ I.

In particular, we can define for vertices v,w and an index i ∈ I the map gvw
i

: Hv
j
→ Hw

j
which maps every vertex

in Hv
i

to the unique vertex in Hw
i

with the same i-coordinate. By the preceding arguments, for each i ∈ J the map gvw
i

is an isomorphism between the i-pre-layers in H for all v,w ∈ V(H).

Finally, assume for contradiction that Υ is a not a coordinatization and hence, Υ is not an isomorphism from H

to any product �i∈I Hi. Hence, there must be some i ∈ I such that not all i-layers are isomorphic by means of gvw
i

, a

contradiction.

Lemma 2.7 allows defining an equivalence relation RΥ on the hyperedge set E(H) for a given pre-coordinatization

Υ : V(H)→ ×i∈I{1, . . . , li} of H, as follows: (e, f ) ∈ RΥ if e ∈ Hv
i

and f ∈ Hw
i

for some i ∈ I and v,w ∈ V(H). In other

words, e and f are in relation RΥ if they are both contained in the i-pre-layers for the same fixed i ∈ I. Note, in case

that Υ is a coordinatization the relation RΥ is also known as product relation, that is, each equivalence of RΥ contains

the hyperedges of all copies of some (not necessarily prime) factor of H. In order to avoid confusion, we sometimes

write that RΥ(H) to indicate that RΥ is defined on the edge set of H.

Given two pre-coordinatizations Υ1 and Υ2, we say that Υ1 is finer than Υ2, while Υ2 coarser than Υ1 if RΥ1
is

finer than RΥ2
. We can immediately infer the next result.

Lemma 2.10. Let H be a hypergraph and let Υ1 and Υ2 be pre-coordinatizations of H. Then Υ1 is finer than Υ2 if

and only if the factorization of [H]2 corresponding to Υ2 can be obtained from the factorization �i∈IGi corresponding

to Υ1 by combining some of these factors, i.e., I can be partitioned into I1, . . . , Il so that the pre-coordinatization Υ2

is an isomporphism between [H]2 and �l
j=1

G′
j
where G′

j
≃ �i∈I j

Gi.

Proof. By definition Υ1 is finer than Υ2 if and only if RΥ1
is finer than RΥ2

. By definition of the Cartesian product and

by Theorem 2.2 this is the case if and only if every factor in the factorization corresponding to Υ2 is a combination of

the factors in the coordinatization Υ1.

Remark 2. By Lemma 2.3, every coordinatization of H is also a pre-coordinatization of H. This implies together

with Lemma 2.10 that every pre-coordinatization of H can be achieved by starting with the pre-coordinatization w.r.t.

the prime factorization of [H]2 and then combining the corresponding pre-layers of H to obtain the layers w.r.t. the

prime factorization of H. In other words, one needs to find a partition
⊎

j∈J I j of the index set I and then combine all

pre-layers corresponding to indices in the same part into one.

As we shall see later, in our algorithm we will only check increments w.r.t. the pre-coordinatization Υ′ coming

from the PFD of [H]2. However, we have to prove that this is indeed sufficient (Theorem 3.1). In order to apply

Lemma 2.9 to validate whether we end up with a coordinatization Υ of H we would need to check increments with

respect to this coarser (pre-)coordinatization Υ. Now one might hope that increments with respect to the coarser

pre-coordinatization are automatically increments with respect to the finer pre-coordinatization Υ′ or that at least the

coarser pre-coordinates can be chosen in a suitable way. However, this is not the case as the following example shows.

5



Assume that at some point we need to combine i- and j-pre-layers of sizes 3 and 4 respectively. The resulting

k-pre-layers with respect to the new coordinatization will each contain 12 vertices labeled 1, . . . , 12. We now claim

that no matter how we assign the new labels, there is always at least one increment inc(·, k) which is not an increment

inc(·, i) or inc(·, j). Assume for a contradiction that all increments inc(·, k) were either of the form inc(·, i) or inc(·, j).

By applying inc(·, k) recursively 12 times to a vertex, we end up at the same vertex again. This means, that we have

applied inc(·, i) a number of times which must be divisible by 3 and inc(·, j) a number of times which must be divisible

by 4. However, no suitable multiples of 3 and 4 add up to 12.

The latter example shows that the single check of increments with respect to the PFD of [H]2 is not sufficient to

invoke Lemma 2.9 to conclude that some coarser pre-coordinatization is indeed a coordinatization. For this purpose,

we need the following additional lemma.

Lemma 2.11. Let H = (V, E) be a hypergraph, let Υ1,Υ2 be pre-coordinatizations of H such that Υ1 is finer than Υ2.

Let inc1 and inc2 the respective increment maps. Assume that for each arc e ∈ E (where the vertices of e differ only in

the j-th coordinate w.r.t. Υ2), there is an arc inc1(e, i) ∈ E for all i < I j (where I j is defined as in Lemma 2.10). Then

there is an arc inc2(e, k) for all k , j and hence Υ2 is a coordinatization of H.

Proof. The coordinates of the vertices in inc2(e, k) w.r.t. Υ1 can be obtained from those of vertices in e by only

changing coordinates outside I j. This can be achieved by successive applications of inc1(·, i) for i < I j. Since we

started at an edge (namely e) and each of those applications takes edges to edges we also end at an edge inc2(e, k).

Hence, Lemma 2.9 implies that Υ2 is a coordinatization.

3. PFD-algorithm for Directed Hypergraphs

3.1. Workflow

We give here a summary of the workflow of the algorithm to compute the prime factor of connected directed

hypergraphs. The top-level control structure is summarized in Algorithm 1 PFD of Di-Hypergraphs in which the

subroutines Preprocessing (Alg. 2) and Combine (Alg. 3) are used.

Algorithm 1 PFD of Di-Hypergraphs

1: INPUT: A hypergraph H = (V, E);

2: H ← Preprocessing(H); ⊲Now, H = (Vlex, Elex) and vertex coordinates are known.

3: Let Gaux = ({1, . . . , k}, ∅) ⊲Here, k is the number of prime factors of [H]2.;

4: for each e ∈ Elex do

5: Let j ∈ {1, . . . , k} be the (unique) coordinate where distinct x, y ∈ V(e) differ;

6: for i ∈ I = {1, . . . , k} \ { j} do

7: if inc(e, i) < Elex then

8: add edge i j to Gaux;

9: end if

10: end for

11: end for

12: Combine(H = (Vlex, Elex),Gaux);

13: OUTPUT: PFD �n
i=1

Hi of H;

As input of PFD of Di-Hypergraphs a connected hypergraph H = (V, E) is expected. First of all, subroutine

Preprocessing is called. Here, the PFD of [H]2 = �k
i=1

Gi and the respective coordinatization Υ of [H]2 is computed

by application of the algorithm of Imrich and Peterin [21]. Then the vertices, the vertices within the arcs and the arcs

are ordered in lexicographic order. This helps to achieve the desired time-complexity in later steps.

By definition, coordinatization Υ of [H]2 is a pre-coordinatization of H. By construction of Υ and Lemma 2.3, the

pre-coordinatization Υ is at least as fine as the coordinatization of H w.r.t. its PFD. By Remark 2 it suffices to find a

suitable partition of I = {1, . . . , k} to derive the prime factors of H. To this end, we initialize in Line 3 of Algorithm 1

the auxiliary graph Gaux, where each vertex i represents an element of I. The edge set is left empty. We might later add

edges in order trace back which equivalence classes of RΥ have to be combined, i.e., all vertices within one connected

components of Gaux will then be in one class of the respective partition of I.

6



Algorithm 2 Preprocessing

1: INPUT: A connected hypergraph H = (V, E);

2: Compute �-PFD of [H]2 = �k
i=1

Gi and vertex-coordinates with the Imrich-Peterin-Algorithm [21];

3: Compute the list Vlex of lexicographic ordered vertices (w.r.t. their coordinates);

4: for each e ∈ E do

5: Reorder t(e) and h(e) w.r.t. the lexicographic order of the vertices;

6: end for

7: Compute the list Elex of lexicographic ordered arcs; w.r.t. to the lexicographic ordered sets t(e) and then h(e);

8: return (Vlex, Elex) with respective vertex-coordinates;

Algorithm 3 Combine

1: INPUT: A hypergraph H = (V, E) with pre-coordinates w.r.t the PFD of [H]2, a graph Gaux;

2: Compute connected components I1, . . . , Il of Gaux;

3: for each e ∈ Elex do

4: Let j ∈ {1, . . . , k} be the (unique) coordinate where distinct x, y ∈ V(e) differ;

5: Let Il be the connected component containing vertex j;

6: Assign color l to hyperedge e;

7: end for

8: compute [H]2 where edges i j obtains the unique color of e where i, j ∈ V(e);

9: compute coordinates of all vertices in V in [H]2; ⊲This pre-coordinatization is the PFD-coordinatization of H

10: return �-PFD �n
i=1

Hi of H;

We continue to check in the for-loop in Line 4-11 of Algorithm 1, if for each arc e ∈ Elex that is contained in some

j-layer its “copies” are also contained in “incremental-neighboring” j-layers, i.e., we check if inc(e, i) ∈ Elex. If this

is not the case, then we add the edge i j to Gaux. Finally, we use the information of the connected components I1, . . . , Il

of Gaux that partition the set I in order to determine the prime factors of the given hypergraph H. To this end, the

subroutine Combine is called and an edge-colored 2-section [H]2 is computed. That is, each edge e ∈ E([H]2) that is

contained in the copy of factor Gi with i ∈ Is obtains color s. In other words, all prime factors G j, j ∈ Is of [H]2 are

combined to a single factor of [H]2 and the edges in the respective Is-layers obtain color s. W.r.t. this coloring it is

possible to efficiently determine new vertex coordinates in [H]2 which is then a factorization coordinatization of H.

We will show, that this leads to a “finest” coordinatization of H and hence, to the prime factors H1, . . . ,Hr of H.

For illustrative examples see Figures 1 and 2.

3.2. Correctness

We are now in the position to prove the correctness of the algorithm PFD of Di-Hypergraphs, summarized in

the following theorem.

Theorem 3.1. Algorithm 1 is sound and complete.

Proof. Given a hypergraph H = (V, E). We start with a preprocessing and call in Algorithm 1 the Algorithm 2. Here,

the PFD of [H]2 = �k
i=1

Gi and the respective coordinatization Υ of [H]2 is computed. This coordinatization Υ is by

definition a pre-coordinatization of H. Since [H]2 is an undirected graph, it is allowed to apply the algorithm of Imrich

and Peterin [21]. Finally, the vertices, the vertices within the arcs and the arcs are ordered in lexicographic order. The

latter task is not important for the correctness of the algorithm, but for the time-complexity that we will consider later

on.

We are now in Line 3 of Algorithm 1. By construction ofΥ and Lemma 2.3, the pre-coordinatizationΥ is at least as

fine as the coordinatization of H w.r.t. its PFD. By Lemma 2.10 it suffices to find a suitable partition of I = {1, . . . , k}.

To this end, we initialize in the auxiliary graph Gaux where each vertex i represents an element of I. The edge set is left

empty. We might later add edges in order trace back which equivalence classes have to be combined, i.e., all vertices

within one connected components of Gaux will then be in one class of the respective partition of I.

Now consider the for-loop in Line 4-11. For each e ∈ Elex we check in which coordinates the vertices in V(e)

differ. Since Υ is a pre-coordinatization and by Lemma 2.7, this is exactly one coordinate for each hyperarc. Let

7



Figure 1: The prime hypergraph H (left-hand side) with arc set E(H) = {e1 = ({11, 12, 13}, {12, 13, 14}),KA : e2 = ({21, 22, 23}, {22, 23, 24}), e3 =

({14}, {12}), e4 = ({11}, {21}), e5 = ({12}, {22}), e6 = ({13, 23}, {13, 23}), e7 = ({14}, {24}), e8 = ({13}, {23})} admits a non-trivial prime factorization

of its 2-section [H]2 (right-hand side) into K4�K2. The vertices of H are labeled w.r.t. its pre-coordinatization given by the coordinatization of

[H]2. For the first arc e4 of the lexicographic ordered arc set Elex = {e4, e1, e5, e8, e6, e3, e7, e2} we can observe that the increment inc(e4, 2) =

(({12}, {22}) = e5 ∈ Elex. Analogously, inc(e1, 1) = e2, inc(e5, 2) = e8, and inc(e8, 2) = e7 are all contained in Elex. However, when we arrive at the

hyperedge e6 we obtain that inc(e6, 2) = ({14, 24}, {14, 24}) is not an arc of Elex. Hence, applying Algorithm 1 would lead to an edge 12 in Gaux,

resulting in a connected auxiliary graph and, H would be determined as prime. A second example for an arc e ∈ Elex with inc(e, i) < Elex is the

edge e = e7.

Figure 2: The non-prime hypergraph H = H1�H2 is the product of the directed prime hypergraph H1 in Fig. 1 and an undirected hypergraph H2

with two vertices and one hyperedge. The vertices of H are labeled w.r.t. its pre-coordinatization given by the coordinatization of [H]2. The auxiliary

graph Gaux is initialized as the graph with three vertices and empty edge-set in Algorithm 1. While the increment inc(e, 2) = {(123, 223), (123, 223)}

of the arc e = {(113, 213), (113, 213)} is still contained in Elex, the increment inc(e, 3) = {(124, 224), (124, 224)} is not. Hence, the edge 13 is added

to Gaux. Since the increments of all hyperedges of the form {(i1 j, i2 j), (i1 j, i2 j)} are contained in Elex, no further edges will be added to Gaux.

Hence, the sub-hypergraph induced by vertices with identical 2nd coordinate, i.e., the {1, 3}-layers, constitute the copies the prime factor H1, while

the sub-hypergraphs induced by vertices with identical 1st and 3rd coordinate, i.e, the 2-layers, are copies of the prime factor H2.

8



e ∈ Elex be a chosen arc and assume that all vertices in V(e) differ in the j-th coordinate. Now, it is checked if for arc

e its “copies” are contained in each Gw
j
-layer where w ∈ inc(V(e), i). If for some arc e ∈ Elex we observe that there

is no hyperedge inc(e, i) = (inc(t(e), i), inc(h(e), i) ∈ Elex then there is no “copy” of e in some j-pre-layer through w

with w ∈ inc(V(e), i). In this case we add the edge i j to Gaux if not already set. The latter tasks are repeated for all

hyperarcs e ∈ Elex.

Finally, in Line 12 the Algorithm 3 is called. The task of this subroutine is to combine the pre-coordinates and

thus, the pre-layers in order to determine the layers of the final prime-factors of H. Let I1, . . . , Ir be the connected

components of Gaux. Clearly, Π = {I1, . . . , Ir} is a partition of I. Let each I j having l j elements. Lemma 2.10 and

Remark 2 imply that Υ̂ : V(H)→ ×r
l=1{1, . . . , lr} is a pre-coordinatization of H. It remains to show that

(1.) Υ̂ is a coordinatization and

(2.) Υ̂ is at least as fine as the coordinatization given by the PFD of H.

Claim (1.): By construction, all e ∈ Elex where the vertices differ in the i-th coordinate w.r.t. Υ are now contained

in some Is-layer where i ∈ Is ∈ Π. Moreover, for all e in some Is-layer the increments inc(e, j) with j , i and j < Is

must be contained in H, as otherwise we would have added the edge i j to Gaux and hence, j ∈ Is. As the latter is true

for all Is-layers contained in Π we can apply Lemma 2.11 and conclude that Υ̂ is a coordinatization of H.

Claim (2.): Given the pre-coordinatization Υ of H. By construction of Υ and Lemma 2.3, Υ is at least as fine as

the coordinatization of H w.r.t. its PFD. Thus, there is a partition Π′ = {I′
1
, . . . , I′t } of I w.r.t. the PFD of H. It remains

to show that if there are two indices i, j ∈ Is ∈ Π, then i, j are also contained in the same class of Π′. If i, j ∈ Is ∈ Π

then they are in same connected component Cs of Gaux. Hence, it suffices to consider pairs i, j ∈ Is ∈ Π that are

connected by an edge. Assume, for contradiction that i, j are in different classes of Π′. W.l.o.g. let i ∈ I′
1

and j ∈ I′
2
.

Moreover, let H = HI′
1
�H∪l≥2I′

l
Hence, for all l ∈ I′

1
and thus, in particular for l = i it holds that for all arcs e in some

I′
2
-layer there is an arc (inc(t(e), i), inc(h(e), i) ∈ Elex. The same holds with the role of i and j switched. However, in

this case we would not add the edge i j to Gaux, a contradiction.

To finish the PFD-computation we have to compute Υ̂. To this end, we compute the 2-section [H]2 with edges xy

colored with color j whenever x and y are contained in some edge e that is contained in some j-layer of H. Lemma

2.3 implies that Υ̂ is also a coordinatization of [H]2 and hence, all edges with same color j in [H]2 are contained

in the same equivalence class of R
Υ̂

([H]2). In other words, (e, f ) ∈ R
Υ̂

(H) if and only if (xy, uv) ∈ R
Υ̂

([H]2) for all

distinct x, y ∈ V(e) and distinct u, v ∈ V( f ). By construction, R
Υ̂

([H]2) is a a product relation of [H]2, and thus we

can apply again a method proposed the by Imrich and Peterin (cf. Theorem 5.1. in [21]), in order to obtain the desired

coordinates and hence, Υ̂.

3.3. Time Complexity

In order to prove the time-complexity results, we first give the following lemma.

Lemma 3.2. Let H be a hypergraph, let [H]2 = �k
i=1

Hi be a factorization of its 2-section into k factors, and let m and

n be the number of arcs and vertices of H, respectively. Then for any l ∈ N0 it holds that kl log m = O(n).

Proof. If mi and ni are the numbers of arcs and vertices of the factors then mi ≤ (2ni )2, since we have to consider tail

and head independently. Let N be the maximum number of vertices of a factor. Then we have

m =

k∑

i=1

mi

k∏

j=1
j,i

n j ≤

k∑

i=1

2ni

k∏

j=1

n j ≤ k · 2N

k∏

j=1

n j.

Taking logarithms on both sides of the inequality gives

log m ≤ log k + N +

k∑

j=1

log(ni) ≤ k + N + k · N ≤ c · k · N

for some suitable constant c.

9



On the other hand by bounding the size of every factor except the biggest one from below by 2 we get n =∏k
i=1 ni ≥ N · 2k−1. Clearly, N · 2k−1 ≥ c′ · N · kl for some suitable constant c′ depending on l. Together with the

estimate for log m this proves the lemma.

The next two lemmas are concerned with the time-complexity of the subroutines Preprocessing and Combine.

Lemma 3.3. Let H = (V, E) be a connected hypergraph with |V | = n, |E| = m and rank r. Then Algorithm 2 performs

in O(r2mn) time. If we assume that H has bounded rank, then Algorithm 2 has time-complexity O(m log2(n)).

Proof. In Line 2, the first task is the computation of the 2-section [H]2. To this end, we initialize an adjacency

list N[1], . . . ,N[n] with empty entries, which can be done in O(n) time. We add for each arc e ∈ E and each pair

{i, j} ∈
(

V(e)
2

)
the vertex i to N[ j] and j to N[i], if these vertices are not already contained in the respective adjacency

lists. Hence, we must check whether i ∈ N[ j] or not. To this end, assume that N[ j] is already ordered. Hence we

need O(log(n)) comparisons to verify if i ∈ N[ j]. If this is not the case, the vertex i is added to N[ j] on the respective

position so that N[ j] stays sorted. Analogously, we add j to N[i], whenever j is not contained in N[i]. As for each

arc e ∈ E there are at most
(

r

2

)
= O(r2) pairs {i, j} and for each such pair we have O(log(n)) comparisons we end in

a time-complexity of O(n + mr2 log(n)) to create the adjacency list N[1], . . . ,N[n]. These lists serve than as input for

the algorithm of Imrich and Peterin which computes the PFD of the 2-section in O(|E([H]2)| + n) time. Since [H]2

is connected and thus, [H]2 has at least |V | − 1 edges, the PFD algorithm runs in fact in O(|E([H]2|) = O(mr2) time.

Hence, the total time complexity of Line 2 of Algorithm 2 is O(n + mr2 log(n) + mr2) = O(mr2 log(n)).

In what follows, let k be the number of factors of [H2] and let each v ∈ V be identified with its respective (pre-)

coordinate vector (v1, . . . , vk) computed by the Imrich-Peterin-Algorithm. Note, k is bounded by log(n).

In Line 3, the list V of vertices is reordered in lexicographic order w.r.t. the vertex coordinates, i.e., v < w if there

is some i ∈ {1, . . . , k} with v j ≤ w j for all j ∈ {1, . . . , i − 1} and vi < wi. This task can be done in O(n log(n)k) =

O(n log2(n)). Since mr ≥ n we obtain that O(n log2(n)) = O(mr log2(n)). This new ordered vertex list is called Vlex.

We are now concerned with the for-loop in Line 4. For each hyperedge e ∈ E we reorder the vertices of its head

and tail w.r.t. to the order of the vertices in Vlex. Each hyperedge contains at most r vertices and hence, this task can

be done in O(r log(r)) time. Therefore, the entire for-loop (Line 4 - 6) takes O(mr log(r)) time.

Finally, the arcs are reordered w.r.t. the lexicographic ordered sets t(e) and h(e). We say e < f if t(e) < t( f )

or t(e) = t( f ) and h(e) < h( f ), whereby the tails, resp., heads are compared w.r.t. the lexicographic order of their

vertices. To determine if t(e) < t( f ) or h(e) < h( f ) for some arcs e, f ∈ E, the at most 2r pairs of vertices must

be compared, whereby the comparison of each such pair can be done in O(1) time, since the vertices are already

ordered in the tails and heads. The reordering of the arcs need than O(m log(m)) comparisons, where each comparison

can be done in O(r) time, by the preceding arguments. Hence, the creation of Elex takes O(rm log(m)) time. By

Lemma 3.2 this is O(rmn). Moreover, if we assume that the rank r is bounded, then m ≤
∑r

i=1

(
n

r

)
≤ rnr = O(nr).

Hence O(log(m)) = O(log(nr)) = O(r log(n)) = O(log(n)). In this case the time complexity for determining Elex is

O(m log(m)) = O(m log(n)).

Taken together the latter arguments, we end in overall time complexity for Algorithm 2 of O(r2mn) and if the rank

r is bounded with O(m log2(n)).

Lemma 3.4. Let H = (V, E) be a connected hypergraph with |V | = n, |E| = m and rank r. Moreover, assume that the

graph Gaux has k vertices and m′ edge with k ≤ log(n). Then Algorithm 3 preforms in O(mnr2) time. If we assume

that H has bounded rank, then Algorithm 3 has time-complexity O(m log2(n)).

Proof. Determining the connected components of Gaux in Line 2 can be done in O(k +m′) = O(log(n)+ log2(n)) time

by application of the classical breadth-first search. While doing this, we will in addition record in O(1) time for each

vertex in which connected component it is contained. Let I1, . . . , Il be the connected components of Gaux.

For each of the m arcs we have to find the indices where the vertices of the particular arc differs. To this end, it

suffices to take any two vertices x and y of V(e) and to compare their k coordinates which takes O(k) time. Let j be

the coordinate where the two vertices differ. We need to check in which of the connected components Is the vertex

is contained in, which can be done in O(1) time, since we have already recorded for each vertex of Gaux, in which

component it is contained in. Now, the color for each arc can be recorded in O(1) time. Hence, the for-loop (Line 3-7)

has overall-time complexity O(mk) = O(m log(n)).

10



To compute the 2-section in Line 8 with colored edges we initialize an extended adjacency list N[1], . . . ,N[n]

where whenever we add some i ∈ N[ j] we also record the respective unique color of i j as a 2nd parameter. Recording

this parameter can be done in O(1) time, as for each arc e ∈ E it is known which color it has. Hence, we can argue

analogously as in the proof of Lemma 3.3, and state that the 2-section with additionally colored edges can be computed

in O(n + mr2 log(n)) time.

Finally, the vertex-coordinates in [H]2 can be computed in O(m′) = O(mr2) time, see Theorem 5.1. in [21].

Hence the overall-time complexity of Algorithm 3 is O(log2(n) + m log(n) + n + mr2 log(n) + mr2) = O(n +

m log2(n)r2). Since mr ≥ n and log2(n) = O(n), the latter can be expressed as O(mnr2). If we assume in addition that

the rank r is bounded we get O(n + m log2(n)r2) = O(mr + m log2(n)r2) = O(m log2(n)).

We are now in the position to determine the time-complexity of algorithm PFD of Di-Hypergraphs.

Theorem 3.5. Let H = (V, E) be a connected hypergraph with |V | = n, |E| = m and rank r. Then Algorithm 1

computes the PFD of H in O(mnr2) time. If the rank r is bounded the time-complexity of Algorithm 1 is O(m log2(n)).

Proof. We suppose both the vertices and the hyperarcs of H implemented as integers and E implemented as an m × 2

array, where each entry E[e, i] contains the list of vertices in t(e) if i = 1 and h(e) if i = 2. In Line 2 we call

Preprocessing(H) which takes O(r2mn) time and if r is bounded O(m log2(n)) time (Lemma 3.3).

In what follows, let k ≤ log(n) be the number of factors of [H2] and assume that each v ∈ V is identified with its

respective (pre-)coordinate vector (v1, . . . , vk).

In Line 3 the auxiliary graph is be initialized. In particular, we initialize Gaux as adjacency list, i.e., we create

empty lists N[1], . . . ,N[k] which can be done in O(k) time.

We are now concerned with the for-loop in Line 4 - 11. For each of the m arcs we have to find the indices

where the vertices of the particular arc differs. To this end, any two vertices x and y of V(e) are chosen and their k

coordinates are compared, which takes O(k) time. The nested for-loop (Line 6 - 10) is executed for all coordinates

i where the vertices of arc e are identical and it is checked whether inc(e, i) = (inc(t(e), i), inc(h(e), i) is contained in

Elex or not. The increment (inc(t(e), i), inc(h(e), i) can be computed in O(r) time. Note, the vertices within inc(t(e), i)

and inc(h(e), i) are still lexicographically ordered as only vertex-coordinates are incremented that have been identical

for the vertices within the arc and thus,their i-th positions are all still equal after the computation of inc(e, i). We now

check whether (inc(t(e), i), inc(h(e), i) < Elex. Since Elex is already ordered, binary search finds the corresponding arc

using at most O(log(m)) comparisons of arcs and since head and tail of each arc are in lexicographic order comparing

two arcs takes O(r) time. Therefore, the if-condition in Line 7 takes O(r + r log(m)) = O(r log(m)) time. In case,

(inc(t(e), i), inc(h(e), i) < Elex we have to add a respective edge i j in Gaux, if not already set. Hence, to check whether

i j exists in Gaux, we need to validate if i ∈ N[ j]. To this end, assume that N[ j] is already ordered. Hence we need

O(log(k)) comparisons to verify if i ∈ N[ j]. If this is not the case i is added to N[ j] on the respective position so that

N[ j] stays sorted. Similarly, j is added to N[i] whenever i < N[ j]. Hence the nested for-loop in (Line 6 - 10) has

time complexity O(k(r log(m) + log(k))) = O(kr log(m)), since the number of arcs m is at least as big as the number

(non-trivial) factors k. Take together the latter arguments, the entire for-loop in Line 4 - 11 has time-complexity

O(m(k + kr log(m))) = O(mkr log(m)). By Lemma 3.2 this is O(mnr). Moreover, if we assume that the rank r is

bounded, then m ≤ nr and hence, O(log(m)) = O(log(nr)) = O(r log(n)) = O(log(n)) In this case, the time complexity

of Line 4 - 11 is O(mk log(m)) = O(mk log(n)) = O(m log2(n)).

Finally, we use Algorithm 3 which performs in O(mnr2) time and if the rank r is bounded it has time-complexity

O(m log2(n)) (Lemma 3.4).

To summarize, each step of Algorithm 1 can be performed in O(mnr2) time and if the rank r is bounded the

time-complexity is O(m log2(n)).

Acknowledgment

We thank the organizers of the 8th Slovenian Conference on Graph Theory (2015) in Kranjska Gora, where the

authors participated, met and basically drafted the main ideas of this paper, while drinking a cold and tasty red Union,

or was it a green Laško?

We also thank Wilfried Imrich and Iztok Peterin for helpful comments regarding the time-complexity of our

algorithm.

11



References

[1] Aurenhammer, F., Hagauer, J., Imrich, W., 1992. Cartesian graph factorization at logarithmic cost per edge. Comput. Complexity 2, 331–349.

[2] Berge, C., 1989. Hypergraphs: Combinatorics of finite sets. volume 45. North-Holland, Amsterdam.

[3] Black, T., 2015. Monotone properties of k-uniform hypergraphs are weakly evasive, in: Proceedings of the 2015 Conference on Innovations

in Theoretical Computer Science, ACM, New York, NY, USA. pp. 383–391.

[4] Brešar, B., 2004. On subgraphs of Cartesian product graphs and S-primeness. Discr. Math. 282, 43–52.

[5] Bretto, A., 2006. Hypergraphs and the Helly property. Ars Comb. 78, 23–32.

[6] Bretto, A., 2013. Applications of hypergraph theory: A brief overview, in: Hypergraph Theory. Springer International Publishing. Mathe-

matical Engineering, pp. 111–116.

[7] Bretto, A., Silvestre, Y., Vallée, T., 2009. Cartesian product of hypergraphs: properties and algorithms, in: 4th Athens Colloquium on

Algorithms and Complexity (ACAC 2009), pp. 22–28.

[8] Bretto, A., Silvestre, Y., Valle, T., 2013. Factorization of products of hypergraphs: Structure and algorithms. Theoretical Computer Science

475, 47 – 58.

[9] Crespelle, C., Thierry, E., Lambert, T., 2013. A linear-time algorithm for computing the prime decomposition of a directed graph with regard

to the Cartesian product, in: Du, D.Z., Zhang, G. (Eds.), Computing and Combinatorics. Springer Berlin Heidelberg. volume 7936 of Lecture

Notes in Computer Science, pp. 469–480.

[10] Dörfler, W., 1979. Multiple Covers of Hypergraphs. Annals of the New York Academy of Sciences 319, 169–176.

[11] Feder, T., 1992. Product graph representations. J. Graph Theory 16, 467–488.

[12] Feigenbaum, J., 1986. Directed Cartesian-product graphs have unique factorizations that can be computed in polynomial time. Discrete Appl.

Math. 15, 105 – 110.

[13] Feigenbaum, J., Hershberger, J., Schäffer, A., 1985. A polynomial time algorithm for finding the prime factors of Cartesian-product graphs.

Discrete Appl. Math. 12, 123–138.

[14] Hammack, R., Imrich, W., Klavžar, S., 2011. Handbook of Product Graphs. Discrete Mathematics and its Applications. 2nd ed., CRC Press.

[15] Hellmuth, M., 2013. On the complexity of recognizing S-composite and S-prime graphs. Discrete Applied Mathematics 161, 1006 – 1013.

[16] Hellmuth, M., Noll, M., Ostermeier, L., 2014. Strong products of hypergraphs: Unique prime factorization theorems and algorithms. Discrete

Applied Mathematics 171, 60 – 71.

[17] Hellmuth, M., Ostermeier, L., Stadler, P., 2012a. Diagonalized Cartesian products of S-prime graphs are S-prime. Discrete Math. 312, 74 –

80. Algebraic Graph Theory - A Volume Dedicated to Gert Sabidussi on the Occasion of His 80th Birthday.

[18] Hellmuth, M., Ostermeier, L., Stadler, P.F., 2012b. A survey on hypergraph products. Math. Comput. Sci. 6, 1–32.

[19] Imrich, W., 1967. Kartesisches Produkt von Mengensystemen und Graphen. Studia Sci. Math. Hungar. 2, 285 – 290.

[20] Imrich, W., 1971. Über das schwache Kartesische Produkt von Graphen. Journal of Combinatorial Theory 11, 1–16.

[21] Imrich, W., Peterin, I., 2007. Recognizing Cartesian products in linear time. Discrete Math. 307, 472–483.

[22] Kaveh, A., Alinejad, B., 2012. Hypergraph products for structural mechanics, in: Topping, B. (Ed.), Proceedings of the Eleventh International

Conference on Computational Structures Technology, Civil-Comp Press, Stirlingshire, UK. doi:10.4203/ccp.99.266. paper 266.

[23] Kaveh, A., Alinejad, B., 2015. Hypergraph products for structural mechanics. Advances in Engineering Software 80, 72 – 81. Civil-Comp.

[24] Klavžar, S., Lipovec, A., Petkovšek, M., 2002. On subgraphs of Cartesian product graphs. Discr. Math. 244, 223–230.

[25] Ostermeier, L., Hellmuth, M., Stadler, P.F., 2012. The Cartesian product of hypergraphs. Journal of Graph Theory 70, 180–196.

[26] Sabidussi, G., 1960. Graph Multiplication. Mathematische Zeitschrift 72, 446–457.

[27] Shapiro, H., 1953. The embedding of graphs in cubes and the design of sequential relay circuits. Bell Telephone Laboratories Memorandum

Unpublished.

[28] Sonntag, M., 1989. Hamiltonian properties of the Cartesian sum of hypergraphs. J. Inf. Process. Cybern. 25, 87–100.

[29] Szamkołowisz, L., 1962. Remarks on the Cartesian product of two graphs. Colloq. Math. 9, 43–47.

[30] Vizing, V.G., 1963. The Cartesian product of graphs. Vyčisl. Sistemy No. 9, 30–43.

[31] Winkler, P., 1987. Factoring a graph in polynomial time. European J. Combin. 8, 209–212.

[32] Zhu, X., 1992. On the chromatic number of the product of hypergraphs. Ars Comb. 34, 25–31.

12


