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Abstract

A well-known conjecture of Alspach says that every 2k-regular Cayley graph of
an abelian group can be decomposed into Hamiltonian cycles. We consider an
analogous question for infinite abelian groups. In this setting one natural analogue
of a Hamiltonian cycle is a spanning double-ray. However, a naive generalisation of
Alspach’s conjecture fails to hold in this setting due to the existence of 2k-regular
Cayley graphs with finite cuts F where |F | and k differ in parity, which necessarily
preclude the existence of a decomposition into spanning double-rays.
We show that every 4-regular Cayley graph of an infinite abelian group all of

whose finite cuts are even can be decomposed into spanning double-rays, and so
characterise when such decompositions exist. We also characterise when such graphs
can be decomposed either into Hamiltonian circles, a more topological generalisation
of a Hamiltonian cycle in infinite graphs, or into a Hamiltonian circle and a spanning
double-ray.

1 Introduction

A Hamiltonian cycle in a finite graph G is a cycle which includes every vertex of the
graph; a Hamiltonian decomposition is a partition of the edge set of G into disjoint
sets E = E1 ⊎ E2 ⊎ · · · ⊎ Er, where each Ei is a Hamiltonian cycle in G. One of the
earliest results in graph theory is a theorem of Walecki from 1890 stating that every finite
complete graph of odd order has a Hamiltonian decomposition (see, for example [3]).
Since then, Hamiltonian decompositions of various classes of graphs have been studied,
the survey of Alspach, Bermond and Sotteau [4] gives an overview.

∗Florian Lehner acknowledges the support of the Austrian Science Fund (FWF) through grants J 3850-
N32 and P 31889-N35.
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It is a folklore result that every Cayley graph of an finite abelian group contains a
Hamiltonian cycle, hence it is natural to ask for which of them we can find a Hamilto-
nian decomposition. Sometimes this fails for parity reasons. Indeed, if a graph has a
Hamiltonian decomposition then it must be 2k-regular for some k. It is a long-standing
conjecture of Alspach that for Cayley graphs of finite abelian groups this is the only
thing that can go wrong.

Conjecture 1 (Alspach [1, 2]). If Γ is a finite abelian group and S generates Γ, then the
Cayley graph Cay(Γ, S) has a Hamiltonian decomposition, provided that it is 2k-regular
for some k.

Not much is known about this conjecture. If k = 1, then it trivially holds, and in
case k = 2 it was proved by Bermond, Favaron and Meheo [5]. However, even the case
k = 3 is still open, although partial results towards this case were given by Liu [14] and
Westlund [18]. Liu also showed [15, 16] that the conjecture holds for any k when S is a
minimal generating set.
While the previous results all concerned finite graphs, Hamiltonian cycles have also

been considered in infinite graphs. It is not immediate what the correct generalisation
of a Hamiltonian cycle to an infinite graph should be. One natural structure to consider
is a spanning double-ray, an infinite connected graph in which each vertex has degree
two, which we will refer to as a Hamiltonian double-ray.

Nash-Williams [17] showed that every connected Cayley graph of a finitely generated
infinite abelian group contains a Hamiltonian double-ray, and together with a result of
Witte [19] this then implies that every connected Cayley graph of a finitely generated
infinite abelian group with infinite degree (that is, S is infinite) has a decomposition
into Hamiltonian double-rays. More recently, the authors and Pitz [12] showed that if
Γ is a finitely generated abelian group, every element of the finite generating set S has
infinite order, and Cay(Γ, S) is one-ended, then it has a decomposition into Hamiltonian
double-rays.
Besides G having to be 2k-regular for some k, there is another parity obstruction to

the existence of a decomposition into Hamiltonian double-rays. A cut is a partition of
the vertex set into two parts called the sides of the cut; it is called finite if there are
finitely many edges connecting the two sides, called cross edges or simply edges of the
cut. If F is a finite cut both of whose sides are infinite, then any Hamiltonian double-
ray must contain an odd number of edges of F , otherwise it only contains finitely many
vertices on one of the sides. So a decomposition into Hamiltonian double-rays can only
exist if the number of cross edges of F has the same parity as k. Note that, for both of
the results mentioned above this parity condition does not play a role since there are no
finite cuts with two infinite sides.
In this paper, we restrict our attention to 4-regular Cayley graphs of infinite abelian

groups. For such graphs, we can assume that either Γ = Z2, or Γ = Z, or Γ = Z ⊕ Zi

for some i, see Proposition 9 and the discussion thereafter. Moreover, for such Cayley
graphs the parity condition on finite cuts mentioned above boils down to the following:

(P) Every finite cut contains an even number of edges.
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The existence of a decomposition into Hamiltonian double-rays in the case Γ = Z2

follows from the work of the authors and Pitz in [12], also see [13, Proposition 5] for a
short, direct proof. Bryant, Herke, Maenhaut, and Webb [6] considered the case Γ = Z
and showed among other things that if S is any generating set with |S| = 2, then
Cay(Z, S) has a decomposition into Hamiltonian double-rays if it satisfies (P). In this
paper we extend this result to groups of the form Γ = Z ⊕ Zi for some i, thus proving
the following result.

Theorem 2. Let G be a connected, 4-regular Cayley graph of an infinite abelian group
which satisfies (P), then G has a decomposition into Hamiltonian double-rays.

Our proof also gives Hamiltonian decompositions for a different notion of infinite
Hamiltonian cycles called Hamiltonian circles. The notion is based on a topological
approach to infinite graph theory, a comprehensive introduction to which can be found
in [8, 7, 10]. We defer the precise definitions to Section 2.1, but mention that any
Hamiltonian circle meets any finite cut in an even number of edges (see Lemma 5).
Thus (P) is also necessary for a decomposition of a 4-regular graph into Hamiltonian
circles to exist. Once again, it turns out that for 4-regular Cayley graphs of abelian
groups, (P) is also sufficient.

Theorem 3. Let G be a connected, 4-regular Cayley graph of an infinite abelian group
which satisfies (P), then G has a decomposition into Hamiltonian circles.

Finally, in case (P) does not hold, we are able to find a ‘mixed’ decomposition into a
Hamiltonian double-ray and a Hamiltonian circle.

Theorem 4. Let G be a connected, 4-regular Cayley graph of an infinite abelian group
which does not satisfy (P), then G has a decomposition into a Hamiltonian double-ray
and a Hamiltonian circle.

2 Preliminaries

2.1 Topological infinite graph theory

A graph G is locally finite if every vertex has finite degree. A ray in a graph is a one-
way infinite path, and an end of a locally finite graph is an equivalence class of rays
under the relation R1 ∼ R2 if for every finite cut F , all but finitely many vertices of
R1 and R2 lie on the same side of F . If we denote by Ω the set of ends of a graph G
then there is a natural topology on the 1-complex of G together with Ω which forms
a compact topological space known as the Freudenthal compactification of G which is
normally denoted by |G|. A circle in G is a subspace of |G| homeomorphic to the circle
S1. It can be shown that a circle is uniquely defined by the set of edges contained in it,
so by a slight abuse of notation we will also call this set of edges a circle.

It is worth noting that there is an equivalent, combinatorial definition of a circle,
generalising the fact that a cycle is an inclusion minimal element of the cycle space of a
graph.
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Lemma 5 ([9]). Let G be a locally finite graph. Then a set of edges C is a circle if
and only if C meets every finite cut F of G in an even number of edges, and there is no
non-empty C ′ ⊊ C with this property.

A Hamiltonian circle is a circle which meets every vertex of G. It is relatively easy
to show that every Hamiltonian circle in a one-ended graph is a spanning double-ray.
For two-ended graphs it can be shown that every Hamiltonian circle is a disjoint union
of two double-rays which together span G, each of which contains a ray to both ends of
the graph. However, for our purposes we will only need the converse of both of these
statements, that such a subgraph is a Hamiltonian circle, which is a simple consequence
of Lemma 5 and whose proof we provide for completeness.

Lemma 6. 1. If G is a locally finite, one-ended graph and C is a spanning double-
ray, then C is a Hamiltonian circle.

2. If G is a locally finite, two-ended graph and C is a disjoint union of two double-rays
which together span G, each of which contains a ray to both ends of the graph, then
C is a Hamiltonian circle.

Proof. In the case that G is one-ended, every finite cut F has a unique infinite compo-
nent, which must contain both tails of C, and hence C must meet F in an even number
edges. For every non-empty strict subset C ′ of C, there is at least one vertex only in-
cident to one edge in C ′. Thus C ′ meets the cut with this vertex on one side and all
other vertices on the other side in only one edge. It follows from Lemma 5 that C is a
Hamiltonian circle.
In the case that G is two-ended, every finite cut F has either one, or two infinite

components. Let C1 and C2 be the two double-rays forming C. If F has one infinite
component, then both tails of C1 and C2 are contained in this component, and so both
must meet F in an even number of edges. In the second case the two tails of C1 and C2

are contained in different components, and so both must meet F in an odd number of
edges. In either case, C meets F in an even number of edges. If C ′ ⊊ C is non-empty,
then either there is a vertex incident to only one edge in C ′, or C ′ is one of C1 and C2.
In the first case we can use the same argument as above to show that C ′ meets some
finite cut in an odd number of edges. Otherwise, let F be a finite cut witnessing the
fact that two sub-rays of C ′ lie in different ends. Then C ′ must contain infinitely many
vertices on both sides of F and thus it contains an odd number of cross edges of F .
Consequently, by Lemma 5, C is a Hamiltonian circle.

2.2 Structure of 4-regular Cayley graphs of abelian groups

It will be useful to give a classification of the possible graphs that can arise as 4-regular
Cayley graphs of infinite abelian groups.

Definition 7. For any k ∈ N and l ∈ Z, the graph Gk,l is the graph with

V (Gk,l) = {(m,n) | m,n ∈ Z, 0 ≤ m < k},

and whose edge set consists of the following three kinds of edges:
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(a) (m,n) to (m,n+ 1) for m,n ∈ Z, 0 ≤ m < k,

(b) (m,n) to (m+ 1, n) for m,n ∈ Z, 0 ≤ m < k − 1, and

(c) (k − 1, n) to (0, n− l) for n ∈ Z.

In all figures throughout this paper, we represent Gk,l as follows. We draw every
vertex (m,n) at coordinates (m,n) in the plane. Edges of type (a) and (b) are drawn as
straight line segments, edges of type (c) are represented by two half edges to the right of
(k − 1, n) and to the left of (0, n− l). Numbers next to these half edges indicate which
of them correspond to the same edge, see for instance Figure 1. We will refer to edges
of type (a) as vertical edges and to edges of types (b) and (c) as horizontal edges.
The aim of this section is to show that any 4-regular Cayley graph of an abelian group

apart from the square grid is in fact of the form Gk,l for some k and l. To this end, the
following observation will be useful.

Observation 8. Let Γ,∆ be isomorphic groups. Then every group isomorphism ϕ : Γ →
∆ is also a graph isomorphism Cay(Γ, {s1, . . . , sk}) → Cay(∆, {ϕ(s1), . . . , ϕ(sk)}). This
also holds for endomorphisms.

Proposition 9. If G is a 4-regular Cayley graph of an infinite abelian group then either
G is the square grid, or there exists k ∈ N and l ∈ Z such that G ≃ Gk,l.

Proof. If G = Cay(Γ, S) is a 4-regular Cayley graph of an abelian group, then 2 ≤ |S| ≤
4. If |S| = 4, then all of the generators must be involutions and the group is finite. If
|S| = 3, then two of the generators are involutions and hence the group is either finite
(in case the third generator has finite order) or Γ = Z⊕Z2 ⊕Z2 = Z⊕ V4. In the latter
case it is easy to verify that G = G4,0 is the only possibility if two involutions of V4

appear in the generating set.
So assume that S = {a, b}. In this case there is a unique endomorphism ϕ : Z2 → Γ

which maps (1, 0) to a and (0, 1) to b. By the isomorphism theorem, Γ ≃ Z2/ kerϕ and
by Observation 8 the respective Cayley graphs are isomorphic as well. So it suffices to
study Cayley graphs of groups of the form Γ = Z2/N with generators (1, 0) and (0, 1),
where N is any subgroup of Z2.
If N ≃ Z2 then Z2/N is finite. If N = {(0, 0)}, then Γ = Z2 and the Cayley graph

is the square grid. The only remaining case is when N is infinite cyclic, i.e. there are
k, l ∈ Z such that N = {n · (k, l) | n ∈ Z}. We can without loss of generality assume
that k > 0—clearly k and l cannot simultaneously be 0 and exchanging their roles leads
to an isomorphic situation. Furthermore, if necessary we can replace (k, l) by (−k,−l).
Now looking at {(m,n) | m,n ∈ Z, 0 ≤ m < k} as a system of representatives it is
straightforward to check that the resulting graph is isomorphic to Gk,l.

Note that every Gk,l occurs as a Cayley graph, more precisely, it is the Cayley graph
of the group Γk,l := Z⊕ Zgcd(k,l) with generators

:=

(
l

gcd(k, l)
, 1

)
and :=

(
− k

gcd(k, l)
, 1

)
.

5



For gcd(k, l) = 1 we note that Z ⊕ Z1 = Z and consistently with the above, Gk,l is the
Cayley graph of the group Γk,l = Z with generators := l and := −k.
Using this representation of Gk,l, vertical edges correspond to the generator and

horizontal edges correspond to the generator . For 0 ≤ m < k the vertex (m,n) of
Gk,l corresponds to the group element m n; we point out that if we refer to a vertex
of Gk,l or group element of Γk,l as a pair (m,n), we always interpret it as m n, and
never as (m ∈ Z, n ∈ Zgcd(k,l)) ∈ Z× Zgcd(k,l).
Note that we do not need to consider the group Z ⊕ V4 since G4,0 also occurs as a

Cayley graph of Γ4,0 = Z ⊕ Z4. Further note that (by replacing generators by their
inverses and swapping their roles) we have that Gk,l ≃ Gk,−l, Gk,l ≃ Gl,k for l > 0, and
Gk,l ≃ G−l,−k for l < 0.
We can specify a walk in Gk,l by giving the starting vertex together with a series of

generators and their inverses, denoted by := −1 and = −1. To avoid confusion
with the group element obtained by multiplication of these generators, we will put the
generators defining the walk in square brackets. For a more compact representation
we will also represent repeated patterns by exponentiation. For example, the following
expressions all define the same walk in G3,1, see Figure 1:

P = (0, 0)(1, 0)(1, 1)(2, 1)(2, 2)(0, 1)(0, 2)(0, 3)

= (0, 0)[ ]

= (0, 0)[ ][ ]2[ ]

= (0, 0)[ ]2[ ][ ]2.

1

1

Figure 1: The walk P in G3,1 starting at the black dot at (0, 0). The label indicates
where the edge from (2, 2) to (0, 1) leaves and enters the diagram.

3 Hamiltonian decompositions of 4-regular Cayley graphs

A vertical cut of Gk,l is the orbit of a horizontal edge under the action of the subgroup
generated by , or in other words, the set all vertical translates of a horizontal edge.
A horizontal cut of Gk,l is the orbit of a vertical edge under the action of the subgroup
generated by . Let Ẽ be a subset of the edges of Gk,l. We say that Ẽ prevails in a
vertical (horizontal) cut, if for every edge e in this cut there are a > 0 and b > 0 such
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that ae and be ( ae and be) lie in Ẽ. We say that Ẽ is horizontally (vertically)
prevalent if there is a horizontal (vertical) cut in which Ẽ prevails and bi-prevalent if
it is both horizontally and vertically prevalent. We say that a decomposition E1 ⊎ E2

horizontally prevalent if both E1 and E2 are horizontally prevalent, and similarly for
vertically and bi-prevalent.

Lemma 10. 1. If Gk,l admits a vertically prevalent or bi-prevalent decomposition
into Hamiltonian double-rays, then so does Gk+2,l.

2. If l > 0 and Gk,l admits a horizontally prevalent or bi-prevalent decomposition into
Hamiltonian double-rays, then so does Gk,l+2.

3. Analogous statements hold for decompositions into Hamiltonian circles, and for
decompositions into a Hamiltonian double-ray and a Hamiltonian circle.

Proof. For the proof of the first statement let E1 ⊎ E2 be a vertically prevalent de-
composition of Gk,l into Hamiltonian double-rays, and let C be a vertical cut in which
both E1 and E2 prevail. Without loss of generality, C consists of all edges connecting
(k− 1, n) to (0, n− l) for n ∈ Z; this can always be achieved by applying an appropriate
automorphism. We write en for the edge connecting (k − 1, n) to (0, n− l). If en ∈ E1,
then we define hn = min{h > 0 | en+h ∈ E1}. Similarly, if en ∈ E2, then we define
hn = min{h > 0 | en+h ∈ E2}.
Next note that Gk+2,l can be obtained from Gk,l by the following procedure: remove

all edges in C, and for every j ∈ Z add vertices (k, j) and (k+1, j) and the appropriate
edges. Using this construction of Gk+2,l we transform E1 and E2 into subsets E′

1 and
E′

2 of the edge set of Gk+2,l as follows. The set E′
i consists of Ei \ C and the edges of

the walks
Wn := (k − 1, n)[ ][ ]hn−1[ ][ ]hn−1[ ]

for every n with en ∈ Ei. See Figure 2 for an example in the case of G4,2.
Vertical prevalence of E1 and E2 ensures that h(e) is finite, thus Wn is a finite walk.

Note that Wn starts in (k−1, n), ends in (0, n− l), and additionally contains the vertices
(k, j) and (k + 1, j) for n ≤ j < n + hn. In particular, by definition of nh, the paths
in {Wn | en ∈ Ei ∩ C} are vertex disjoint and their union covers the vertices (k, j) and
(k + 1, j) for j ∈ Z.

We now show that E′
1 and E′

2 form the desired decomposition of Gk+2,l. The graph
spanned by E′

i is obtained from the graph spanned by Ei by replacing edges in C by
disjoint paths with the same endpoints. Since the graph spanned by Ei was connected
and 2-regular, the same is true for the graph spanned by E′

i. It contains all vertices
(i, j) for i < k and j ∈ Z since Ei was spanning, and it contains all vertices (k, j) and
(k + 1, j) due to the above observation.
To see that E′

1 and E′
2 are disjoint, first note that E1 \ C and E2 \ C are disjoint, so

we only need to show that the walks Wn are edge disjoint. Take en ∈ E1 and em ∈ E2.
If Wn and Wm intersect in a horizontal edge, then either n = m (for the first and last
edge), or n + hn = m + hm (for the central edge). This is not possible because en and
en+hn are in E1 whereas em and em+hm are in E2. For vertical edges note that if Wn
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Figure 2: Extending a bi-prevalent decomposition of G4,2 into Hamiltonian double-rays
to a bi-prevalent decomposition of G6,2.

contains an edge from (k, j) to (k, j+1) or from (k+1, j+1) to (k+1, j), then ej+1 ∈ E2.
Similarly, if Wm contains such an edge, then ej+1 ∈ E1. This implies that they cannot
contain the same vertical edge, so Wn and Wm must be disjoint.

The decomposition E′
1 ⊎ E′

2 is vertically prevalent since E′
i contains the edge from

(k + 1, n) to (0, n− l) if and only if Ei contains an edge from (k − 1, n) to (0, n− l). If
we additionally assume that E1 ⊎ E2 is horizontally prevalent, then so is E′

1 ⊎ E′
2 since

any horizontal cut in Gk,l is fully contained in a horizontal cut in Gk+2,l.
This finishes the proof of the first statement. The second statement follows from the

fact that for l > 0 there is an isomorphism between Gk,l and Gl,k which swaps horizontal
and vertical cuts. The third statement can be proved in a completely analogous fashion
(with the additional observation that Ei having tails in different ends of Gk,l implies
that E′

i has tails in different ends of Gk+2,l), we leave the details to the reader.

Lemma 11. Let Γ be a 2-ended abelian group1, let S be a generating set, and let ∆ be
an infinite cyclic subgroup of Γ generated by a. Let G be the Cayley graph of Γ with
respect to S and let H be the Cayley graph of Γ/∆ with respect to the generating set
S∆, where we allow multiple edges in case s1∆ = s2∆ for s1, s2 ∈ S, and let π : G → H
be the projection map. Let C be a Hamiltonian cycle in H and let k be the sum of the
generators used along this cycle.

1. If k = a, then π−1(C) is a Hamiltonian double-ray in G.

2. If k = a2, then π−1(C) is a Hamiltonian circle in G.

Proof. Every vertex v of G has exactly two incident edges in the preimage (namely the
two edges corresponding to the same generators as the edges in C incident to π(v)).

1We note that the number of ends of a Cayley graph does not depend on the generating set chosen, see
for example [11] .
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Hence π−1(C) is 2-regular.
Since C is spanning in H we know that every component of π−1(C) contains elements

of all cosets with respect to ∆. Moreover, if k = a, then by following the edges corre-
sponding to the same generators as edges along C, we see that for any element v of Γ
the element va lies in the same component of π−1(C) as v. Hence in this case π−1(C) is
connected and thus a Hamiltonian double-ray.

If k = a2, then a similar argument shows that v and vai lie in the same component if
and only if i is even, so π−1(C) has exactly two components. Each of the components
is invariant under the action of a2 and since high positive and negative powers of a
converge to different ends of G we conclude that each component contains tails in both
ends. Thus π−1(C) is a Hamiltonian circle.

Lemma 12. 1. If 3 ≤ k = l + 2, then Gk,l has a bi-prevalent decomposition into
Hamiltonian double-rays.

2. If 3 ≤ k = l + 3, then Gk,l has a bi-prevalent decomposition into one Hamiltonian
double-ray and one Hamiltonian circle.

3. If 3 ≤ k = l + 4, then Gk,l has a bi-prevalent decomposition into Hamiltonian
circles.

Proof. Let A be the group generated by = . Note that the quotient group is a
cyclic group generated by A = A. The Cayley graph H of this quotient group is a
cycle where each edge has been replaced by two parallel edges (corresponding to the two
different generators.
If k = l+2, pick a Hamiltonian cycle C of H using exactly k− 1 edges corresponding

to the generator . Recall that ( k l) = id, so C contains l + 1 = k − 1 edges
corresponding to the generator and the same is true for the (edge-)complement of C.
Note that ( k−1 l+1) = . Thus Lemma 11 implies that the preimages E1 of C and
E2 of its complement under the natural projection map form a decomposition of Gk,l

into Hamiltonian double-rays. See the left picture in Figure 3 for an example in G4,2.
The argument for the case k = l + 4 is completely analogous, but with k − 2 = l + 2

edges corresponding to generators and respectively; note that ( k−2 l+2) = 2.
See the right picture in Figure 3 for an example in G4,0.
For k = l + 3 we choose the cycle C with k − 1 edges corresponding to the generator
and (consequently) l + 1 = k − 2 edges corresponding to the generator . Thus the

complement will contain k − 2 edges corresponding to the generator and l + 2 edges
corresponding to the generator . It follows that the preimage E1 of C is a Hamiltonian
double-ray and the preimage E2 of its complement is a Hamiltonian circle. See Figure 4
for an example in G4,1.
It remains to show that the decompositions are bi-prevalent. If we follow the edges

of E1 starting at id then the first edge corresponding to lies in the same horizontal
cut H as the edge from id to , and the first edge corresponding to lies in the same
vertical cut K as the edge from id to . Since C contains edges of both types, we know
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that E1 contains at least one edge in both of these cuts. Similarly, E2 contains edges in
both of these cuts.
Note that k = k k = k−l. Since the decomposition E1 ⊎ E2 is invariant under

the action of A, this implies that for every edge e ∈ Ei ∩K the edges i(k−l)e for i ∈ Z
are also in Ei ∩ K; thus the decomposition is vertically prevalent. If l = 0, then the
horizontal cut H is finite, and the decomposition is horizontally prevalent because both
parts intersect with H, otherwise the same argument as for K applies.

1

1

2

2

3

3

11

22

11

Figure 3: A bi-prevalent double-ray in G4,2 whose complement is a bi-prevalent double-
ray and a bi-prevalent circle in G4,0 whose complement is a bi-prevalent circle.

Note that the restriction k ≥ 3 in the first condition is necessary since G1,−1 and G2,0

are not 4-regular. In the other two cases it is merely required to enable us to apply
Lemma 11; if k was smaller than 3 in these cases then the quotient group would become
trivial or infinite.
By Proposition 9 the only 4-regular Cayley graphs of abelian groups are either the

square grid, or of the form Gk,l. Since the square grid satisfies the conclusion of Theorem
2, it will suffice to show that every 4-regular Gk,l which satisfies (P) has a decomposition
into Hamiltonian double-rays and a decomposition into Hamiltonian circles. It is easy
to check that (P) is satisfied if and only if k and l have the same parity. Hence the
following lemma completes the proof of Theorems 2, 3, and 4.

Lemma 13. Let k ∈ N and l ∈ Z be such that Gk,l is 4-regular.

1. If k ≡ l mod 2, then Gk,l has a decomposition into two Hamiltonian double-rays.

2. If k ≡ l mod 2, then Gk,l has a decomposition into two Hamiltonian circles.

3. If k ̸≡ l mod 2, then Gk,l has a decomposition into a Hamiltonian double-ray and
a Hamiltonian circle.
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Figure 4: A bi-prevalent double-ray in G4,1 whose complement is a bi-prevalent circle.

Proof. By the remark after Proposition 9 it is sufficient to prove the lemma for k ≥ l ≥ 0.
Moreover, we can ignore the cases k = 1, l ≤ 1 and k = 2, l = 0 since they do not lead
to 4-regular graphs.
For the first part, note that by Lemma 12, there are bi-prevalent decompositions of

G4,2 and G3,1 into Hamiltonian double-rays. Lemma 10 and induction finish the proof
apart from the cases k = l = 2 and k > l = 0. For l = 0 it is enough to show that G4,0

has a vertically prevalent decomposition into Hamiltonian double-rays, once this is done
we can induct using the first part of Lemma 10. For k = l = 2 we explicitly construct a
decomposition. Both of these are presented in Figure 5.
In order to prove the second statement, recall that there is an isomorphism between

Gk,l and Gk,−l and note that this isomorphism preserves horizontal and vertical cuts.
Hence by Lemma 12 the graphs G4,0 and G3,1 ≃ G3,−1 have bi-prevalent decompositions
into Hamiltonian circles. Furthermore we give in Figure 6 a bi-prevalent decomposition
of G4,2 into Hamiltonian circles. An inductive application of Lemma 10 then finishes
the proof of the second part apart from the case k = l = 2. To see that G2,2 has a de-
composition into Hamiltonian circles, simply consider the decomposition into horizontal
and vertical edges.
For the proof of the third part note that by Lemma 12 the graphs G5,2, G4,1, and

G3,0 have bi-prevalent decompositions into a Hamiltonian double-ray and a Hamiltonian
circle. Inductive application of Lemma 10 finishes the proof apart from the case k =
2, l = 1. However, the graph G2,1 has a decomposition into a Hamiltonian double-ray
and a Hamiltonian circle as well; again consider the decomposition into vertical and
horizontal edges.

4 A generalisation of Alspach’s conjecture

The conditions in Alspach’s conjecture arise quite naturally; since every Hamiltonian
cycle must meet every cut of a graph in an even number of edges, for a Hamiltonian
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1
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2

1

1

Figure 5: A bi-prevalent decomposition of G4,0 and a vertically prevalent decomposition
of G2,2 into Hamiltonian double-rays.
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Figure 6: A bi-prevalent decomposition of G4,2 into Hamiltonian circles (note that the
complement of this circle is a vertical translation of it).

decomposition to exist each cut must be even, and this is equivalent in a finite graph to
insisting that each vertex has even degree.
If we consider Hamiltonian circles, which again meet every finite cut of an infinite graph

in an even number of edges, then clearly (P) is again necessary for a decomposition into
Hamiltonian circles to exist, and a natural generalisation of Alspach’s conjecture would
be that (P) is also sufficient. Theorem 3 shows that this is true for 4-regular Cayley
graphs.
A Hamiltonian double-ray, however, meets a finite cut of an infinite graph an even

number of times if the cut has one infinite component graph, and an odd number of times
if it has one infinite component. Hence in order for a decomposition into k Hamiltonian
double-rays to exist the number of edges in every finite cut with one infinite component
must be even, and the number of edges in every finite cut with two infinite components
must have the same parity as k. A simple double counting argument shows that the first
condition will always hold if G is 2k-regular, and so perhaps a natural generalisation
of Alspach’s conjecture for double-rays would be that, together with 2k-regularity, this
second condition is also sufficient. Again Theorem 2 shows that this is true for 4-regular
Cayley graphs.
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In light of Theorem 4, an even more ambitious conjecture, would be the following. Let

(Qi) Every finite cut F with two infinite components satisfies |F | ≡ i mod 2.

Conjecture 14. Let G be a 2k-regular Cayley graph of an abelian group. If G satisfies
(Qi) then G has a decomposition into i many Hamiltonian double-rays and k − i many
Hamiltonian circles.
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