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Abstract. In 1982, Durnberger proved that every connected Cayley graph of a finite group
with a commutator subgroup of prime order contains a hamiltonian cycle. In this pa-
per, we extend this result to the infinite case. Additionally, we generalize this result to a
broader class of infinite graphs X, where the automorphism group of X contains a transi-
tive subgroup G with a cyclic commutator subgroup of prime order.

1 Introduction

A hamiltonian path (cycle) in a finite graph is a path (cycle) that traverses every vertex of
the graph exactly once. A graph X is called vertex-transitive if its automorphism group acts
transitively on its vertices, in other words, for any two vertices v1 and v2 in V (X), there
exists an automorphism f : V (X)→ V (X) such that f (v1) = v2. Lovász in 1969 conjectured
that every finite connected vertex transitive graph has a hamiltonian path [10, p 497], but
even decades later this conjecture remains largely unresolved. A particularly significant
class of transitive graphs is the class of Cayley graphs. Lovász’ conjecture has been verified
for certain classes of Cayley graphs, such as Abelian groups, p-groups [20], and groups
whose order has few prime factors [11], see the surveys [12, 21] for more results.

Hamiltonicity problems have also received significant attention in the context of infinite
graphs, as evidenced by recent studies [1, 7, 14–16]. It is worth noting that there are
several appropriate generalizations of hamiltonian cycles for infinite graphs. In this paper,
our focus is on two-way hamiltonian paths.

Definition 1 (cf. [18, pp. 286 and 297]). Let X be a countably infinite graph. A two-way
hamiltonian path is a two-way infinite list . . . ,x−2,x−1,x0,x1,x2, . . . containing each vertex of
X exactly once, such that xi is adjacent to xi+1 for each i.

Many results about hamiltonian paths in finite graphs carry over to the infinite setting.
For instance, the following result is well-known.

Lemma 1. Let G be a finitely generated abelian group. Then the following holds:

(i) [13, Corollary 3.2] If G is finite, then every Cayley graph of G has a hamiltonian cycle.

ÂDepartment of Mathematics, University of Auckland, 38 princes street, 1010, Auckland, New Zealand
Email: florian.lehner@auckland.ac.nz

ÊDepartment of Mathematics and Computer Science, University of Lethbridge, Lethbridge, AB, Canada.
Email: farzad.maghsoudi93@gmail.com
ÄSchool of Computer Science, Carleton University, Ottawa, ON, Canada. Email:

bobby.miraftab@gmail.com

1



ei = (xi, yi)

ei+1 = (xi+1, yi+1)

γ
vn−5 vn vn+1 vn+5

Figure 1: An example of a two-way infinite path aligned with [e` | ` ∈ Z].

(ii) [17, Theorem 1] If G is infinite, then every Cayley graph of G has a two-way hamiltonian
path.

Recall that the commutator subgroup G′ of a group G is the subgroup generated by
all commutators 〈[x,y] = xyx−1y−1 | x,y ∈ G〉, so G is abelian if and only if the commutator
subgroup of G is trivial. Since Lovász’ conjecture is known to be true for Cayley graphs of
abelian groups, it seems natural to explore scenarios where the order of the commutator
subgroup of G is small. In 1982, Durnberger proved the following:

Theorem 2. [6, Theorem 1] There is a hamiltonian cycle in every connected Cayley graph of a
finite group whose commutator subgroup has prime order.

Our first result is an extension of Theorem 2 to infinite locally finite Cayley graphs.

Theorem 3. Let G = 〈S〉 with G′ � Zp. Then Cay(G;S) has a two-way hamiltonian path.

Then our next result is a generalization of the preceding theorem to infinite locally finite
transitive graphs.

Theorem 4. Let X be an infinite locally finite G-transitive graph such that G′ � Zp. Then X
has a two-way hamiltonian path.

An overview of the proof techniques: We first prove that every Cayley graph of a finitely
generated group G, where G′ � Zp, contains a two-way hamiltonian path. We then extend
this result to infinite, locally finite, transitive graphs whose automorphism groups have a
commutator subgroup that is cyclic of prime order.

The first step in the proof of Theorem 3 is to find a two-way hamiltonian path γ in a
Cayley graph of G/G′ together with an infinite set of edges F aligned with γ , see Figure 1
for a sketch. More precisely, we define the following:

Definition 2. Let X be a multigraph and let γ : . . . ,v−1,v0,v1, . . . be a two-way-infinite path
in X. Call an infinite sequence {e` = (x`, y`) | ` ∈ Z} of edges of X aligned with γ if none
of the edges e` is contained in γ , and for every ` ∈ Z there is some j ∈ Z and k ≥ 1 such
that x` = vj , y` = vj+k , and x`+1 = vj+k+1. In this case, each edge e` is called jumping, see
Figure 1.

We note that the case k = 1 in the above definition can only occur in multigraphs, since
in this case the edge e` is parallel to an edge in the infinite path γ .

Notation 5. If γ is a two-way infinite path aligned with a sequence [e` = (x`, y`) | ` ∈ Z], then
adding an edge e` to γ gives rise to a unique cycle. We denote this cycle by C`.
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The second step in our strategy is to use an aligned sequence of edges to “lift” a hamil-
tonian path in a Cayley graph of G/G′ to a hamiltonian path in a Cayley graph of G. To
simplify notation, we introduce the following notation, where usually N will be equal
to G′.

Notation 6. Let G be a group with a normal subgroup N . Then there is a projection homomor-
phism π : G→ G/N . For every subgroup(subset) of H of G, we denote the image of H under π
by H ; for every g ∈ G we denote the coset gN by g.

Let’s return to the strategy. Since we assume that G′ is finite, each cycle C` in the
Cayley graph G/G′ lifts to a finite subgraph of the Cayley graph of G, referred to as a block
(π−1(C`)), see Figure 2.

The trickiest part of the proof is finding a hamiltonian path with an aligned sequence
that ensures that each block has a hamiltonian cycle. To this end, we use the concept of
voltage.

Definition 3 (cf. [8]). Let G = 〈S〉 be a group, where S is finite, and let N be a normal
subgroup of G. Let C B g(s1, . . . , sn) be a cycle in Cay(G;S). The voltage of C denoted by
Volt(C) is defined as the product s1 · · ·sn.

It can be shown (see Lemma 13) that if the voltage of C` is non-trivial, then the corre-
sponding block has a hamiltonian cycle.

Finally, if every block has a hamiltonian cycle, we can combine suitable hamiltonian
paths within each block to form a two-way hamiltonian path in the Cayley graph of G, see
Figure 3.

Next, let X be a locally finite graph, where a group G acts transitively on X and G′ =
Zp. We leverage the existence of a two-way hamiltonian path in a Cayley graph to construct
a two-way hamiltonian path in X. More specifically, we consider the quotient graph X/G′,
which is a Cayley graph of an abelian group. A two-way hamiltonian path in the quotient
is lifted to X, forming paths in X corresponding to the cosets ofG′. As in the previous case,
blocks are defined in X, and we show that each block contains a hamiltonian path. These
paths are then connected across blocks via a matching, resulting in the desired two-way
hamiltonian path.

2 Preliminaries

Throughout this paper, we assume that G is an infinite group with a finite generating set S
that is symmetric and minimal. When considering Cayley graphs we always assume them
to be connected.

2.1 Brief review on quotient graphs

Definition 4 (cf. [2, §2 pp 4]). A G-graph is a graph X admitting an injective homomor-
phism ϕ : G → Aut(X). If the action G on X is transitive, then we say X is a transitive
G-graph.

In this paper, we assume all G-actions are faithful, meaning there are no group ele-
ments g ∈ G (other than the identity element) such that gx = x for all x in X.
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Definition 5 ([4, Definition 2.8.]). Let X be a G-graph and let H be a subgroup of G. The
quotient graph X/H is that graph whose vertices are theH-orbits, and two such verticesHx
and Hy are adjacent in X/H if and only if there is an edge in X joining a vertex of Hx to a
vertex of Hy.

Observation 7. If X is a transitive G-graph and H is normal in G, then X/H is vertex-
transitive: the action of G on V (X) factors through to a transitive action of G/H on V (X/H), by
automorphisms of X/H .

Notation 8. Let X be a G-graph and let N be a normal subgroup of G. Then there is a canonical
homomorphism π : X → X/N . In particular, if X = Cay(G;S), then there is a graph homomor-
phism π : Cay(G;S)→ Cay(G/N,SN ).

Definition 6. Let X be a G-graph and let H be a subgroup of G. Let e ∈ E(X/H). Then an
edge (u′ ,v′) of X is called a lifting of e if π((u′ ,v′)) = e. A lifting of a subgraph is defined
analogously.

Our next goal is to show that given a G-graph X where G′ = Zn, and a hamiltonian
path γ in X/G′ we can cover X with liftings of γ each of which is a two-way infinite path.
The following lemma is well-known, but we provide a proof for the convenience of the
reader.

Lemma 9. Let X be a G-graph and let H be a subgroup of G. For every edge (u,v) ∈ E(X/H)
and every x ∈ π−1(u), there is an edge (x,y) ∈ E(X) such that π((x,y)) = (u,v).

Proof. By definition, there exist adjacent vertices x′ ∈ π−1(u) and y′ ∈ π−1(v). Since x′ ∈
π−1(u) and x ∈ π−1(u), there exists h ∈ H such that hx′ = x, implying that x is adjacent to
hy′.

Lemma 10 ([4, Corollary 2.5]). Let X be a transitive G-graph with a vertex v. Then the
stabilizer of v i.e. StG(v), does not contain a non-trivial, normal subgroup of G.

Lemma 11. Let X be a G-graph, where G′ = Zn. Then for every two-way hamiltonian path γ
of X/G′, there is a set L(γ)B {γ1, . . . ,γn} of liftings of γ such that each γi is a two-sided infinite
path, and

V (X) =
n⊔
i=1

V (γi).

Proof. Let G′ = {g1, g2, . . . , gn}, where g1 = 1, and γ be a two-way hamiltonian path in X/G′

with the following lifting: . . . ,v−2,v−1,v0,v1,v2, . . . Also, let γi be a lifting of γ in G as
follows: . . . , giv−2, giv−1, giv0, giv1, giv2, . . . where i ∈ {1,2, . . . ,n}. Next, we show that they are
vertex-disjoint. Assume to the contrary that givn′ = gjvm′ . Thus, we have vn′ = g−1

i gjvm′
which implies that G′[vn′ ] = G′[vm′ ]. If vn′ , vm′ , then it yields a contradiction, as γ is a
hamiltonian two-way path in X/G′. So we infer that vn′ = vm′ which implies that g−1

i gj ∈
St(vn′ ). If gi , gj , then (G′ ∩ StG(vn′ ))charG′ E G which implies that G′ ∩ StG(vn′ ) is a
normal subgroup of G. It now follows from Lemma 10 that StG(vn′ ) has a non-trivial
normal subgroup which yields a contradiction and so gi = gj .
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Figure 2: The Block is defined by a two-way hamiltonian path aligned with a sequence.

Let G = 〈S〉 be a group with a finite commutator subgroup. Let Cay(G;S) have a two-way
hamiltonian path γ aligned with sequence [e` | ` ∈ Z]. Every jumping edge e` defines a
block of vertices in Cay(G;S) in the following way:

Definition 7. Let X be a transitive G-graph, where |G′ | < ∞. Let γ : . . . ,v1,v0,v1, . . . be
a two-way hamiltonian path in X/G′ aligned with a sequence [e` | ` ∈ Z]. Then the block
B((vin ,vjn)) is the induced subgraph ofX on the vertices

⋃
in≤i≤jn π

−1(vi), where en = (vin ,vjn).
The entrance of B(en) are the set of vertices π−1(vin) and the exit of B(en) are the set of ver-
tices π−1(vjn).

Definition 8. Let X be a G-graph with an edge (u,v) ∈ E(X/G′) and let G′ = {g1, . . . , gn}. A
lifting (giu,gjv) of (u,v) is called bouncing edge if i , j.

Remark 12. It is not hard to see that an edge e` is bouncing if and only if Volt(C`) , 1. We
note that if a lifting of an edge e` is bouncing, then there is a bouncing edge adjacent to
each lifting of an endpoint of e`.

Lemma 13. Let X be an infinite transitive G-graph with G′ � Zp for some prime p. Let γ be
a two-way hamiltonian path in X/G′ aligned with a sequence [e` | ` ∈ Z] such that each e` is a
bouncing edge. Every block of X has a hamiltonian cycle containing some bouncing edge.

Proof. Let G′ = 〈g〉, and let . . . ,v−2,v−1,v0,v1,v2, . . . be a two-way hamiltonian path in X/G′

with a lifting . . . ,v−2,v−1,v0,v1,v2, . . .. Without loss of generality, we may assume that the
block B(e0) is π−1({v0, . . . ,vk}) and that there is a bouncing edge (v0, gvk).

For i ∈ {0,1,2, . . . ,p − 1} there is a lifting γi of the two-way hamiltonian path in X/G′

defined as follows: . . . , g iv−2, g
iv−1, g

iv0, g
iv1, g

iv2, . . .. By Lemma 11 the lifts γi are pairwise
disjoint.

We observe that the vertices of the block B(e0) are
⋃n
i=1{g iv0, g

iv1 . . . , g
ivk}, and that

there exists a subpath pi of γi connecting g iv0 to g ivk). We further note that (g iv0, g
i+1vk)

is a bouncing edge and that each bouncing edge (g iv0, g
i+1vk) connects the first vertex of

pi to the last vertex of pi+1.

It follows from our construction that the edges of all paths pi together with the bounc-
ing edges (g iv0, g

i+1vk) form a hamiltonian cycle, see Figure 3.
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Figure 3: Connecting hamiltonian cycles from each block to a two hamiltonian path. The
entrance and exit of each block are indicated by black vertices.

Corollary 14. Let B(e`) be an arbitrary block, and let u be at the entrance of B(e`). Then there
exists a hamiltonian path in B(e`) starting with u and ending at a vertex in the exit of B(e`).

3 Aligned sequences with two-way paths

Let G be an infinite finitely generated, non-abelian group whose commutator subgroup G′

has infinite index. Let S be some finite generating set of G and let S be the corresponding
generating set of G = G/G′. We will show that under these assumptions we can find a
two-way hamiltonian path in Cay(G;S) aligned with a sequence of edges such that the
corresponding cycles have non-trivial voltages.

Recall the definition of the Cartesian product of two graphs.

Definition 9 (cf. [9, §7.4]). The Cartesian product X�Y of two graphs X and Y is the graph
with vertex set V (X)×V (Y ) where (x1, y1) is joined to (x2, y2) by an edge if and only if either
x1 = x2 and (y1, y2) ∈ E(Y ) or y1 = y2 and (x1,x2) ∈ E(X).

Our general strategy is as follows. Since G′ has infinite index, G is an infinite abelian
group. Therefore Cay(G;S) has a spanning subgraph isomorphic to some grid P∞� P∞ or
Pn � P∞, where Pn denotes the path of length n and P∞ denotes a two-way-infinite path.
In these spanning subgraphs, we can find hamiltonian paths with aligned sequences of
edges, see Figure 4. Finally, we slightly modify the hamiltonian paths to ensure that all
cycles corresponding to jumping edges have non-trivial voltages.

In order for this last step to work, we need some control over the generators corre-
sponding to the various edges in our grids. In Section 3.1 we define precisely what this
means and show that we can always find spanning grids that meet our requirements.

3.1 Constructing spanning grids

The goal of this section is to find useful spanning substructures in Cayley graphs of abelian
groups. Later we will apply the results to the group G/G′, but throughout this subsection,
we let G be an abelian group with generating set S.

We start by describing the substructures we aim to find. Let Pn denote the path of
length n and let P∞ denote the two-way infinite path. A spanning grid of Cay(G;S) is a
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f−1 f0 f1

e1e−1

e−2 e2

(a)

v−2 v−1 v0 v1 v2 v3 v4 v5e1 e3 e5

(b)

Figure 4: Two-way hamiltonian path and jumping edge ei in P∞� P∞ and Pn� P∞

subgraph of Cay(G;S) isomorphic to Pm � Pn containing all vertices of Cay(G;S) where
m,n ∈ N∪∞. We refer to the edges of the grid corresponding to Pm as horizontal edges and
the edges corresponding to edges of Pn as vertical edges.

Recall that edges in a Cayley graph can be labelled by the corresponding generators.
Call a grid in Cay(G;S) consistently labelled if all horizontal edges in the same column have
the same label, and all vertical edges in the same row have the same label. We say that
a consistently labelled grid has an X-component for X ⊆ S if either all horizontal edges
and none of the vertical edges are labelled with elements of X, or all vertical and none of
the horizontal edges are labelled X. We call X-components finite or infinite depending on
whether the corresponding factor in the Cartesian product is finite or infinite. To simpify
notation, we write x-component instead of {x}-component and x-y-component instead of
{x,y}-component. Finally, let us call a path of length 3 a useful x-triple, if its first and last
edges correspond to generators x±1 and x±1, and a strongly useful x-triple if one of them
corresponds to x and the other to x−1.

In what follows, by a hamiltonian path we mean either a two-way infinite hamiltonian
path or (in case the corresponding graph is finite) a standard finite hamiltonian path.

Lemma 15. Let G be an abelian group with a finite generating set S. For every x ∈ S the Cayley
graph Cay(G,S) contains one of the following:

• a hamiltonian path all of whose edges correspond to the generator x, or

• a consistently labelled spanning grid with an x-component.

Proof. If G = 〈x〉, then G is cyclic and the edges corresponding to x form a hamiltonian
path. If G , 〈x〉, then we can find a hamiltonian path in the Cayley graph of G/〈x〉 by
Lemma 1. Let γ be a lift of this hamiltonian path in Cay(G;S).

If the index of 〈x〉 in G is infinite, then xiγ is also a lift of the hamiltonian path,
and all these lifts are disjoint (compare Lemma 11). By adding all edges labelled x to the

7



v−2 v−1 v0 v1 v2 v3 v4 v5e1 e3 e5

Figure 5: Modifying the the two-way hamiltonian path of Figure 4.

union of all of these lifts we obtain a consistently labelled spanning grid with an infinite
x-component.

If 〈x〉 has finite index k, then xiγ is a lift of the hamiltonian path for 0 ≤ i < k. By
adding all edges labelled x which connect xiγ to xi+1γ for 0 ≤ i < k −1, we obtain a consis-
tently labelled spanning grid with a finite x-component.

Lemma 16. Let G be a (finite or infinite) abelian group with a generating set S, let x ∈ S, and
assume that S contains another element y , x±1. Then Cay(G;S) contains a hamiltonian path
containing a useful x-triple. If 〈x〉 is finite, we can find a hamiltonian path containing a strongly
useful x-triple.

Proof. First, assume that x does not generate G. By Lemma 15, we can find a spanning grid
with an x-component. If 〈x〉 is finite, then the x-component of this grid is finite, and the
hamiltonian path sketched in Figure 4 (b) contains a strongly useful x-triple. So we may
assume that 〈x〉 is infinite and thus the x-component of the grid is infinite. If the Sr {x±1}-
component is infinite or only consists of a single edge, then the hamiltonian paths shown
in Figure 4 (a) have useful x-triples. If the S r {x±1}-component is finite but consists of
more than one edge, then we can modify the hamiltonian path sketched in Figure 4 (b)
locally to obtain a useful x-triple, see Figure 5.

Now assume that G = 〈x〉. Let i be the minimal value such that xi = y. Take the
hamiltonian path all of whose edges correspond to x. Since y , x−1 we know that this path
contains at least i + 1 edges. Now replace some subpath of the form (xi+1) by (x,y,x−i+1, y).
It is easy to see that this is again a hamiltonian path, and it clearly contains a strongly
useful x-triple.

Lemma 17. Let G be an infinite abelian group with a generating set S. For every pair x,y ∈ S of
distinct generators, if G , 〈x,y〉, then Cay(G,S) contains a consistently labelled spanning grid
with one of the following (up to swapping the roles of x and y):

• an infinite x-component and an infinite S r {x±1}-component with a useful y-triple, or

• an infinite x-component and a finite S r {x±1}-component with a strongly useful y-triple,
or

• a finite x-y-component and a strongly useful y-triple in this x-y-component.

8



Proof. We proceed similarly to the proof of Lemma 15. Let H = 〈x,y〉. Note that by as-
sumption G ,H .

Assume first that H is finite. By Lemma 16, we can find a hamiltonian path v1, . . . , vn
in Cay(H, {x,y}) containing a strongly useful y-triple. As in the proof of Lemma 15, find a
hamiltonian path in the Cayley graph of G/H and let γ be a lift of this hamiltonian path
in Cay(G;S). Then viγ is also a lift of this hamiltonian path and the lifts are disjoint. Now
adding the edges with label vi+1v

−1
i between viγ and vi+1γ for 1 ≤ i < n gives a consistently

labelled spanning grid with a finite x-y-component and a strongly useful y-triple in this
x-y-component.

Now assume that H is infinite, and thus without loss of generality, 〈x〉 is infinite.
Further, without loss of generality assume that y < 〈x〉; if this is not the case, then y also
has infinite order and it is not hard to see that x < 〈y〉, so we only need to swap the roles of
x and y.

By Lemma 16, the Cayley graph of G/〈x〉 contains a hamiltonian path with a useful y-
triple, and this useful y-triple is strongly useful ifG/〈x〉 is finite. Like in the previous cases,
taking lifts of this path and connecting them by edges corresponding to the generator x
like yields the desired grid.

3.2 Constructing Two-way hamiltonian paths in G/G′

Throughout this section, let G be a finitely generated non-abelian group and let S be a
generating set of G. Let G′ denote the commutator subgroup of G and let G = G/G′ with
generating set S = {s | s ∈ S}. Let x,y ∈ S such that [x,y] , 1.

Our aim in this section is to find a hamiltonian path in Cay(G;S) with an aligned se-
quence (e`)`∈Z of edges such that the cycle corresponding to each e` has non-trivial voltage.
We start with the easy case where x = y.

Lemma 18. With the above notation, if x = y, then Cay(G;S) contains a two-way hamiltonian
path with an aligned sequence (e`)`∈Z such that the cycle corresponding to each e` has non-trivial
voltage.

Proof. We slightly abuse notation by treating x and y as different generators, and instead
of each edge labelled x drawing a pair of parallel edges labelled x and y, respectively. By
Lemma 15, the Cayley graph Cay(G;S) either has a hamiltonian path all of whose edges
are labelled x, or a consistently labelled spanning grid with an x component.

In the first case, we can simply let (e`)`∈Z consist of every second edge labelled y along
the hamiltonian path. The corresponding cycles have length 2 and labels x and y (or their
inverses). Since y , x±1, the voltage of each such cycle is non-trivial.

In the second case, take a hamiltonian path in Cay(G;S) with an aligned sequence of
edges as sketched in Figure 4. If the voltage of a cycle corresponding to an edge e` is trivial,
replace one edge labelled x in this cycle by its parallel mate with label y (or vice versa).
Since y , x±1, this changes the voltage of this cycle.
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Figure 6: Modifying the paths pi to obtain p′is

From now on we will assume that x , y. Hence either G = 〈x,y〉, or Cay(G;S) contains
one of the three spanning grids described in Lemma 17.

We first consider the case where the spanning grid is P∞�P∞. We start with the hamil-
tonian path sketched in Figure 4(a). Our aim is to recursively modify this hamiltonian path
to ensure that the voltages of the cycles corresponding to jumping edges are non-trivial.
Since the figure exhibits symmetry, it is enough to define the modifications for the cycles
on the right side.

All our modifications are confined to an ‘eighth’ of the grid. The modification is
sketched in Figure 6; note that if we take a hamiltonian path which contains every pi
as a subpath, and replace every pi in Figure 6 (a) by the corresponding p′i in Figure 6 (b),
then the result is again a hamiltonian path.

Lemma 19. Let Γ be a consistently labelled spanning grid of Cay(G;S) with an infinite x-
component and an infinite S r {x±1}-component containing a useful y-triple. Then Cay(G;S)
contains a two-way hamiltonian path with an aligned sequence (e`)`∈Z such that the cycle cor-
responding to each e` has non-trivial voltage.

Proof. Let γ be the two-way hamiltonian path in Figure 4(a), and assume that all vertical
edges are labelled x, and that the three horizontal edges f−1, f0, f1 connecting the central
columns form a useful y-triple. Our goal is to modify this hamiltonian path so that the
voltage of the cycle corresponding to each jumping edge is non-trivial. To this end, we
recursively apply the modification described above. We notice again that it suffices to only
consider the right half-grid; the left half follows by symmetry.

Let us denote the i-th jumping edge by ei , let Pi be the subpath of γ connecting the
two endpoints of ei , and let Ci be the cycle consisting of Pi and ei . Let Pi,j and Ci,j be the
corresponding path and cycle after j steps of our modification procedure. We will ensure
that Volt(Cj,j ) , 1, and that Ci,j = Ci,i for every j > i. Moreover, our procedure ensures that
for every j, each vertex of Ci is contained in Ci′ ,j for some i′ ≤ i.

Before showing how to ensure these properties, we show that they allow us to define
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Pi,j−1

Pi+1,j−1

Pi+2,j−1

Pi+3,j−1

w

w′

(a)

P ′i,j−1

P ′i+1,j−1

P ′i+2,j−1

P ′i+3,j−1

(b)

Figure 7: Modifying the paths Pi,j−1 to obtain paths P ′i,j−1.

the desired hamiltonian path. Let γ ′ be obtained from γ by replacing every Pi by Pi,i . Then
γ ′ is connected because γ was connected, and every Pi,i is connected. Moreover γ ′ contains
every vertex of each Pi , because each such vertex is contained in Pi′ ,i = Pi′ ,i′ for some i′ ≤ i.
Next note that every vertex has degree 2 in γ because in order to have larger degree, a
vertex would have to be contained in Pi,i and Pi′ ,i′ for i > i′, and thus have degree larger
than 2 in the i-th iteration. Hence γ ′ is a hamiltonian path. The ei are still jumping edges
for γ ′, and Volt(Ci,i) , 1 by construction.

It remains to show that we can guarantee the claimed properties after each iteration.
The properties clearly hold after 0 iterations, as there is no Ci,i whose voltage needs to be
non-trivial. Inductively assume that they hold after j − 1 iterations for some j > 0.

If Volt(Cj,j−1) , 1, we can set Ci,j = Ci,j−1, and all properties are satisfied after the j-th
iteration. In preparation of the (j + 1)-th step, we shift the eighth grid in which future
modifications are to take place up by two steps, see Figure 7.

So we may assume that the voltage of Cj,j−1 is trivial. We set Pi,j = Pi,j−1 for 0 < i < j,
and Pi,j = P ′i,j−1 as illustrated in Figure 7 (b) for i ≥ j. Finally, in preparation of the (j+1)-th
step, we shift the eighth grid in which future modifications are to take place up by three
steps, see Figure 7.

For i < j it holds that Ci,j = Ci,j−1 = Ci,i by definition and the induction hypothesis.
Further note that for arbitrary i, each vertex of Ci,j−1 is either contained in Ci,j or in Ci−1,j ,
and thus by the induction hypothesis, each vertex of Ci is contained in Ci′ ,j for some i′ ≤ i
as claimed.

It only remains to show that the voltage of Cj,j is not trivial. LetW denote the product
of the labels along the subpath of Cj,j from the initial vertex of ej to w′, as shown in
Figure 7 (a). Similarly, let W ′ be the product of the labels along Cj,j from w, also depicted
in Figure 7 (a), to the initial vertex of ei . Let r ∈ {y,y−1} be the generator corresponding to
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Figure 8: Modifying Cj,j−1 by adding or removing a square. (instead of ei it should be ej to
match the description in the text)

the edge from w to w′. Clearly, Volt(Cj,j−1) =Wr−1W ′ = 1 which implies that r =W ′W .

Volt(Cj,j ) =Wxr−1x−1W ′ =W ′−1W ′Wxr−1x−1W ′ =W ′−1[r,x]W ′

Which is non-trivial because [r,x] , 1

Lemma 20. Let Γ be a consistently labelled spanning grid of Cay(G;S) with

• an infinite x-component and a finite S \ {x}-component with a strongly useful y-triple, or

• a finite x-y-component and a strongly useful y-triple in this x-y-component.

Then Cay(G;S) contains a two-way hamiltonian path with an aligned sequence (e`)`∈Z such that
the cycle corresponding to each e` has non-trivial voltage.

Proof. Let γ be the two-way hamiltonian path sketched in Figure 4 (b). Like in the proof
of Lemma 19, our goal is to recursively modify this hamiltonian path so that the voltage
of the cycle corresponding to each jumping edge is non-trivial, and like in this proof (by
symmetry) it is enough to consider jumping edges ei for i > 0. We use the same notation
as in the proof of Lemma 19: let ei be the i-th jumping edge, let Pi be the subpath of γ
connecting the endpoints of ei , let Ci be the cycle consisting of Pi and ei , and let Pi,j and
Ci,j be the corresponding path and cycle after j modification steps.

Let f0, f1, f2 be the set of edges of a strongly useful y-triple in the finite factor of the
grid. The modification step is sketched in Figure 8.

Similarly to the proof of Lemma 19, we ensure that Volt(Cj,j ) , 1, and Ci,j = Ci,i for
every i > j. Moreover, we will ensure that all vertices of Ci are contained in Ci′ ,j for i′ ∈
{i−1, i, i+1}, and the same argument as in this proof then shows that replacing every Pi by
Pi,i yields the desired hamiltonian path.

12



Clearly the properties hold before the first iteration, as there is no Ci,i whose voltage
needs to be non-trivial. Inductively assume that they hold after j − 1 iterations for some
j > 0.

If Volt(Cj,j−1) , 1, we can set Ci,j = Ci,j−1, and all properties are satisfied after the j-th
iteration. So assume that Cj,j−1 has trivial voltage.

For i < {j, j + 1}, we set Pi,j = Pi,j−1. If Γ has a finite x-y-component, then obtain Pj,j and
Pj+1,j by replace the parts of Pj,j−1 and Pj+1,j−1 shown in Figure 8 (a) by the ones shown
in Figure 8 (b). If Γ has an infinite x-component, then we replace the parts of Pj,j−1 and
Pj+1,j−1 shown in Figure 8 (a) by the ones shown in Figure 8 (c). In both cases it can be
shown (analogously to the last part of the proof of Lemma 19) that Volt(Cj,j ) is conjugate
to [x,y], and thus non-trivial.

Notation 21 (cf. [21, §2.1]). For v ∈ G and an infinite sequence (s) = (. . . , s−2, s−1, s1, s2, . . .) of
elements of S±1we define a walk v(s) in Cay(G;S) that visits the vertices:

. . . ,vs−1
−1s
−1
−2,vs

−1
−1,v,vs1,vs1s2, . . .

Moreover, we use (. . . a, sk ,b, . . .) as a shorthand for (. . . , a, s, . . . , s︸︷︷︸
k

,b, . . .).

Lemma 22. If G = 〈x,y〉, then Cay(G;S) contains a two-way hamiltonian path with an aligned
sequence (e`)`∈Z such that the cycle corresponding to each e` has non-trivial voltage.

Proof. Since G is infinite, we know that at least one of x and y has infinite order. Assume
without loss of generality that the order of x is infinite. If there is no n such that yn ∈ 〈x〉,
then Cay(G;S) has a consistently labelled spanning grid of with an infinite x-component
and an infinite y-component, then Lemma 19 finishes the proof.

So assume that there is such an n, and let n ∈ N be minimal such that yn ∈ 〈x〉. If n = 1,
then G = 〈x〉, so G is infinite cyclic, and y generates a subgroup of finite index > 1. By
swapping the roles of x and y we may thus assume that n > 1. Moreover, we may assume
that yn = x−m for some m ≥ 0, otherwise replace x by x−1.

We note that Cay(G, {x,y}) contains two hamiltonian paths whose edge labels are peri-
odic with period (x,yn−1,x,y−n+1) and (yn−1,xm+1), respectively. Both of these have aligned
sequences of jumping edges, see Figure 4(b) and Figure 9.

The voltage of the cycles corresponding to jumping edges in Figure 4 (a) is [yn−1,x],
the voltage of the cycles in Figure 9 is xmyn. If one of these voltages is non-trivial, then we
are done.

So assume that both voltages are trivial. From xmyn = 1 we obtain (by conjuga-
tion) xm−1ynx = 1 and yn−1xmy = 1. Since yn−1 and x commute, we have that yn−1xmy =
xm−1yn−1xy, and thus

xm−1ynx = xm−1yn−1xy.

Cancelling xm−1yn−1 on both sides of this equation we get xy = yx, contradicting the as-
sumption that [x,y] , 1.

13



Figure 9: The illustration of a two-way hamiltonian path in Cay(G, {x,y}) with jumping
edges for the case m = 3 and n = 6.

Theorem 23. Let G = 〈S〉 be a group, let G = G/G′ and let S be the generating set of G corre-
sponding to S. Then Cay(G;S) has a two-way hamiltonian path γ aligned with sequence (e`)`∈Z
such that Volt(C`) , 1 for every ` ∈ Z.

Proof. If x = y, then Lemma 18 applies. Otherwise, by Lemma 17 above, one of Lemma 19,
Lemma 20, and Lemma 22 applies.

4 Two-way hamiltonian paths in transitive G-graphs with G′ � Zp

In this section, we first prove Cay(G;S) has a two-way hamiltonian path. Throughout the
remainder of the paper, p always denotes a prime number.

Lemma 24. Let G = 〈S〉 be a group such that G′ ∩ S = ∅ and G′ � Zp. Then Cay(G;S) has a
two-way hamiltonian path.

Proof. It follows from Theorem 23 that Cay(G;S) has a two-way hamiltonian path γ aligned
with a sequence [e` | ` ∈ Z] such that Volt(C`) , 1 in G. Let γ : . . . ,v1,v0,v1, . . . be a two-way
hamiltonian path in Cay(G;S) aligned with a sequence [e` | ` ∈ Z] such that Volt(C`) , 1 for
each ` ∈ Z. By Corollary 14, for every vertex at the entrance of a block B, there exists a
hamiltonian path that starts at that vertex and ends at the exit of B. Additionally, there is
a perfect matching between the entrance and the exit vertices of two consecutive blocks,
allowing us to connect two hamiltonian paths in consecutive blocks, see Figure 3.

Lemma 25. Let G = 〈S〉 be a group such that G′ ∩ S , ∅ and G′ � Zp. Then Cay(G;S) has a
two-way hamiltonian path.

Proof. First, let’s define K B 〈G′ ∩ S〉. Since G′ is cyclic, K becomes a characteristic sub-
group of G′, thus K EG. As G/K ∩ SK = ∅, according to Lemma 24, there exists a two-way
hamiltonian path γ : . . . ,u−1,u0,u1, . . . in Cay(G/K ;SK). We note that Cay(K ;G′ ∩ S) has
a hamiltonian cycle, as shown in Lemma 1 (I). Consequently, there exists a hamiltonian
cycle Ci : v

i
1, . . . , v

i
m in each π−1(ui). A clockwise orientation is fixed in each Ci . Let pi rep-

resent the hamiltonian path starting with vi1 and moving along Ci clockwise. There is a
perfect matching between π−1(ui) and π−1(ui+1). Subsequently, an edge ei connecting vin
to a vertex vi` in π−1(ui+1) is used. Next, we find the hamiltonian path pi+1 along the cycle
Ci+1 clockwise. This procedure is repeated for each i′ ∈ Z, as depicted in Figure 10. It can
be seen that {pi | i ∈ Z}

⋃
{ei | i ∈ Z} constitutes a two-way hamiltonian path.

14



Figure 10: An illustration of a two-way hamiltonian path in Lemma 25 for the case p = 5.

Theorem 3. Let G = 〈S〉 with G′ � Zp. Then Cay(G;S) has a two-way hamiltonian path.

Proof. The proof follows from Lemma 24 and Lemma 25.

Next, we extend Theorem 3 to transitive graphs whose automorphism group has a
finite cyclic group of order p as its commutator subgroup. However, we first need to review
a few preliminary results.

Lemma 26 (Sabidussi’s Theorem [5, Theorem 1.2.20]). Let X be a transitive G-graph. There
is a subset S of G, such that X is isomorphic to the Cayley graph Cay(G;S) if and only if Aut(X)
contains a subgroup that is isomorphic to G and acts sharply transitively on V (X).

In particular, if G acts on a graph X transitively such that StG(x) is trivial for some
x ∈ V (X), then X is (isomorphic to) a Cayley graph on G. We note that G/G′ is abelian
which implies that G′St(v)/G′ is a normal subgroup of G/G′ for every v ∈ V (X). So G′St(v)
is a normal subgroup of G for every v ∈ V (X) and we have the following corollary:

Corollary 27. Let X be a transitive G-graph. Then X/G′ is a Cayley graph of G/(G′StG(v)).

Lemma 28. Let X be a G-graph and v ∈ V (X). If G acts on X transitively but not sharply.
There exists a neighbor u of v such that StG(v) , StG(u).

Proof. If the stabilizer of each neighbor y of a vertex x is equal to the stabilizer of x, then
there exists an automorphism that fixes X, implying that the action is not faithful. There-
fore, there must be a vertex x with a neighbor y such that StG(x) , StG(y). Since G is
transitive, we conclude that there exists a neighbor u of v such that StG(v) , StG(u).

Theorem 4. Let X be an infinite locally finite G-transitive graph such that G′ � Zp. Then X
has a two-way hamiltonian path.

Proof. If the stabilizer of a vertex ofX is trivial, thenX is a Cayley graph and by Theorem 3,
we are done. So we can assume that there is a vertex with non-trivial stablizer. It follows
from Corollary 27 that X/G′ is a Cayley graph ofG/(G′StG(v)). We notice thatG/(G′StG(v))
is an abelian group. There is a two-way hamiltonian path γ aligned with the sequence
[e` | ` ∈ Z]. Let G′ = {g1, . . . , gn} and g1 = 1. We set two-way paths L(γ) B {γ1, . . . ,γn} of
liftings of γ , where γi is

. . . , giv−2, giv−1, giv0, giv1, giv2, . . .

We note that by Lemma 11 we have V (X) = tpi=1V (Ri). We claim the following

Claim 29. If π((u,v)) = e`, then there is a bouncing edge in π−1(e`).
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Proof. Let (G′[u],G′[v]) = e` be an edge such that the lifting edge (u,v) is not bouncing.
By Lemma 28, there is a neighbor v of u such that StG(u) , StG(v) and so there is ζ ∈ G
such that ζ(u) = u, but ζ(v) , v. There exists α ∈ G such that αu = v and so G′StG(v) =
(G′StG(u))α. As we mentioned before G′St(u) is a normal subgroup of G. Thus G′StG(v) =
G′StG(u) which implies that ζ(v) ∈ G′[v]. We note that u and v are adjacent and so ζ(u) = u
and ζ(v) are adjacent. We are assuming that (u,v) is not bouncing. Since ζ(v) , v and
ζ(v) ∈ G′[v], we conclude that (u,ζ(v)) is a bouncing edge and π(u,ζ(v)) = e`.

Since for each e` for ` ∈ Z, there is a bouncing edge in π−1(e`), we are able to setup our
blocks in X, as described in Definition 7. By Corollary 14, for every vertex at the entrance
of a block B, there exists a hamiltonian path that starts at that vertex and ends at the exit
of B. Additionally, there is a perfect matching between the entrance and the exit vertices
of two consecutive blocks, allowing us to connect two hamiltonian paths in consecutive
blocks.

5 Hamiltonian circles

Diestel and Kühn (cf. [3]) have introduced a topological point of view that suggests a dif-
ferent analogue of a hamiltonian cycle for infinite graphs that are locally finite. The inspi-
ration behind this approach is as follows:

In a finite graph, a hamiltonian cycle corresponds to a copy of the circle S1 in X, which
includes all the vertices of X. In the case of an infinite graph X, adding the point at
infinity to a two-way-infinite hamiltonian path results in a copy of S1 in the one-point
compactification of X. This compactification contains all the vertices of X. The new ap-
proach acknowledges that circles in a different compactification, specifically the Freuden-
thal compactification, can be more interesting in the context of infinite graphs.

If an infinite graph has only one end, then its Freudenthal compactification is the same as
its one-point compactification. In such cases, it is easy to observe that every hamiltonian
circle is a two-way-infinite hamiltonian path.

Corollary 30. Let Cay(G;S) be a one-ended graph, where G′ � Zp. Then Cay(G;S) has a
hamiltonian circle.

We close the paper with the following conjecture.

Conjecture 31. Let G = 〈S〉 be a two-ended group, where G′ � Zpn . Then Cay(G;S) has a
hamiltonian circle.

Also one can ask if G′ � Zpn , does G = 〈S〉 have a two-way hamiltonian path?
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