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Abstract. The relative fixity of a permutation group is the maximum proportion of the points fixed by a
non-trivial element of the group and the relative fixity of a graph is the relative fixity of its automorphism

group, viewed as a permutation group on the vertex-set of the graph. We prove in this paper that the relative

fixity of connected 2-arc-transitive graphs of a fixed valence tends to 0 as the number of vertices grows to
infinity. We prove the same result for the class of arc-transitive graphs of a fixed prime valence, and more

generally, for any class of arc-transitive locally-L graphs, where L is a fixed quasiprimitive graph-restrictive

permutation group.

1. Introduction

For a permutation group G acting on a finite set Ω and an element g ∈ G, let Fix Ω(g) = {ω ∈ Ω : ωg = ω}
be the set of fixed points of g, let

fprΩ(g) :=
|Fix Ω(g)|
|Ω|

be the fixed-point-ratio of g, and let

fixΩ(G) := max{Fix Ω(g)| : g ∈ G, g 6= idΩ} and rfxΩ(G) := max{fprΩ(g) : g ∈ G, g 6= idΩ} =
fixΩ(G)

|Ω|
be the fixity and the relative fixity of G, respectively.

Bounding the fixity of permutation groups has a long history, going back to a classical result of Jordan
who proved that for every constant c apart form a finite list of exceptions (depending on c), every primitive
permutation group G ≤ Sym(Ω) not containing Alt(Ω) satisfies fixΩ(G) ≤ |Ω| − c. This result was later
improved by several authors, such as Babai [1], Liebeck and Saxl [11], Saxl and Shalev [18], and Guralnick
and Magaard [9], for example. Their work, among other results, amounts to a complete understanding of all
primitive groups G ≤ Sym(Ω) with rfxΩ(G) > 1/2. There are several results giving bounds on the fixity of
transitive actions of almost simple groups (see, for example, [5, 10, 11]), but in general, not much is known
about fixity of imprimitive permutation groups.

A natural relaxation of the primitivity condition appears in the theory of groups acting on graphs. Let
G be a transitive permutation group acting on a finite set Ω and let ω ∈ Ω. An orbit of the stabiliser Gω
in the set Ω \ {ω} is then called a suborbit of G. Given a suborbit Σ one can construct a so called directed
orbital graph whose vertex-set is Ω and the set of directed edges is {(ωg, σg) : g ∈ G, σ ∈ Σ}. If this set
of directed edges is invariant under the operation of interchanging the points in each ordered pair, then the
suborbit is called self-paired and the directed orbital graph can be viewed as an undirected graph (called
simply an orbital graph) upon which the group G acts as a group of automorphisms acting transitively on
the arcs (ordered pairs of adjacent vertices).

A remarkable observation of Graham Higman asserts that G acts primitively on Ω if and only if each
of its suborbits yields a connected directed orbital graph. With the existing results on fixity of primitive
permutation groups in mind it is now natural to ask to what extent these results carry over to the case where
at least one directed orbital graph is connected. The class of permutation groups having such a suborbit is
still too wide for any meaningful upper bound on the fixity. For example, the imprimitive wreath product
of Cn wr Sym(m) acting on the Cartesian product Ω of a set of size n and a set of size m has a (non-self
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paired) suborbit of size m yielding a connected directed orbital graph; namely, the lexicographic product of
a directed cycle of length n with an edgeless graph on m vertices, in which the fixity is |Ω| − 2.

As we shall show in this paper, the situation changes if a suborbit Σ corresponding to a stabiliser Gω
in a transitive permutation group G ≤ Aut(Ω) is self-paired and satisfies additional conditions either on its
length and/or on the permutation group GΣ

ω induced by the action of Gω on Σ. The main result of the paper
is the following (recall that the socle of a group is the subgroup generated by all minimal normal subgroups):

Theorem 1. For every positive real number α there exists a constant cα with the following property. Let
G be a transitive permutation group acting on a finite set Ω, |Ω| > cα, admitting a self-paired suborbit Σ
yielding a connected orbital graph, such that at least one of the following holds:

(1) the cardinality of Σ is a prime number;
(2) GΣ

ω is doubly-transitive;
(3) GΣ

ω is primitive with its socle acting regularly (i.e., GΣ
ω is primitive of affine or twisted wreath type).

Then rfxΩ(G) < α.

In fact, we prove a slightly more general result, namely Theorem 9, which is stated in the graph theoretical
language in Section 3 (where the proof of Theorem 1 can also be found). The fixity of the automorphism
group of a graph was, to the best of our knowledge, first studied by Babai [2, 3] and was motivated by the
famous Graph Isomorphism Problem [4]. The fixity of the automorphism group of vertex-transitive graphs
of valence at most 4 was recently investigated in [15] and the present paper can be seen as a strengthening
of the results proved there under additional assumptions on the group of automorphisms.

In what follows, we mostly use standard graph- and group-theoretical notation. In particular, a graph
Γ is determined by its (finite) vertex-set V(Γ) and edge-set E(Γ) consisting of unordered pairs of (distinct)
adjacent vertices. All graphs in this paper are finite and simple. An automorphism of a graph Γ is by
definition a permutation of V(Γ) which, in its action on unordered pairs of elements of V(Γ), preserves
E(Γ). The group of all automorphisms of Γ is denoted Aut(Γ). For a vertex v of Γ, let Γ(v) denote the
neighbourhood of v. The image of v under g ∈ Aut(Γ) is denoted by vg. For every G ≤ Aut(Γ) there are
obvious induced actions of G on E(Γ), on the arc-set A(Γ) := {(u, v) : {u, v} ∈ EΓ} of Γ and on the set
A2(Γ) := {(u, v, w) : {u, v}, {v, w} ∈ EΓ, u 6= w} of 2-arcs of Γ. If G is transitive on V(Γ), E(Γ), A(Γ) or
A2(Γ), then Γ is said to be G-vertex-transitive, G-edge-transitive, G-arc-transitive or (G, 2)-arc-transitive,
respectively; with the reference to G omitted when G = Aut(Γ).

For a permutation group G on a set Ω, let Ω/G denote the set of all G-orbits on Ω and let G+ be the
group generated by all the point-stabilisers Gω, ω ∈ Ω. Observe that G+ is normal in G, implying that
Ω/G+ is a G-invariant partition of G. For a set B ⊆ Ω, we let GB = {g ∈ G : Bg = B} be the set-wise
stabiliser of B in G. The centre of a group G will be denoted by Z(G). If g, x ∈ G we let gx = x−1gx, write
gG = {gx : x ∈ G} and let CG(g) = {x ∈ G : gx = g}. A permutation group G is said to be quasiprimitive
provided that all non-trivial normal subgroups of G (including G itself) are transitive.

2. Auxiliary results

In this section we prove a series of lemmas that are needed in the proof of Theorem 1. Some of them are
standard and have appeared elsewhere in a similar form (such as Lemma 2), while some are, to the best of
our knowledge, new and can be found interesting on its own (Lemma 4, for example).

Lemma 2. If G ≤ Sym(Ω) and g ∈ G, then

(1) |Fix Ω(g)| ≤ |CG(g)||Ω/G|.
Furthermore, if G is normal in a group acting transitively on Ω and ω ∈ Ω, then

(2) fprΩ(g) ≤ |Gω| |CG(g)|
|G|

.

Proof. We prove the first inequality by double counting the set

S = {(δ, x) | δ ∈ Ω, x ∈ G, gx ∈ Gδ}.
By choosing first x and then δ we see that

(3) |S| =
∑
x∈G
|{δ ∈ Ω | gx ∈ Gδ} =

∑
x∈G
|Fix (gx)| = |Fix (g)| |G|.
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On the other hand,

(4) |S| =
∑
δ∈Ω

|{x ∈ G | gx ∈ Gδ}|.

Now let Aδ := {x ∈ G | gx ∈ Gδ} and let ϕ : Aδ → gG ∩ Gδ be a function defined by ϕ(x) := gx. Let h be
an arbitrary element of gG ∩ Gδ, and let y ∈ G be such that h = gy. Then the preimage ϕ−1(h) consists
of elements x such that gx = gy, or equivalently, that xy−1 ∈ CG(g). Hence ϕ−1(h) = CG(g)y and thus
|Aδ| = |gG ∩Gδ| |CG(g)|. Using (3) and (4), it follows that

|Fix (g)| |G| = |S| =
∑
δ∈Ω

|gG ∩Gδ| |CG(g)| ≤ |CG(g)|
∑
δ∈Ω

|Gδ| = |CG(g)| |Ω/G| |G|,

proving inequality (1). If G is normal in a group acting transitively on Ω, then all of its orbits are of equal
length and hence |Ω| = |ωG||Ω/G| = |G| |Ω/G|/|Gω|. Inequality (2) then follows by dividing inequality (1)
by |Ω|. �

For a group X and an element g ∈ X let gX denote the conjugacy class of g in X and let 〈gX〉 be the
subgroup of X generated by all the elements of gX .

Lemma 3. There exists a strictly decreasing function f : [1,∞)→ R+, limx→∞ f(x) = 0, with the following
property: If g is an element of a transitive permutation group X ≤ Sym(Ω), ω ∈ Ω, and G = 〈gX〉, then

fprΩ(g) ≤ |Gω| |X : G| f(|G : Z(G)|).

Proof. Observe first that G is a normal subgroup of X. Now consider the action of G on the conjugacy class
gX by conjugation. The stabiliser of a point g′ ∈ gX is then the centraliser CG(g′) and the kernel K of this
action consists of all the elements of G that centralise every element of gX . Since G = 〈gX〉, it follows that
K = Z(G), implying that G/Z(G) acts faithfully on gX and thus |G/Z(G)| ≤ |gX |!. On the other hand,

|gX | = |X|
|CX(g)|

= |X : G| |G : CG(g)| |CG(g)|
|CX(g)|

≤ |X : G| |G : CG(g)|,

showing that

|G : Z(G)| ≤ (|X : G| |G : CG(g)|)!.
In particular, by letting f be the function mapping x ∈ [1,∞) to 1

Γ−1(x−1) , where Γ−1 is the inverse of the

Gamma function restricted to the interval [2,∞), we see that f is a strictly decreasing function satisfying

|CG(g)|
|G|

≤ |X : G| f(|G : Z(G)|).

The claim now follows from inequality (2) of Lemma 2. �

Lemma 4. If G is a transitive permutation group acting on a finite set Ω, then:

exp(G) divides |G : Z(G)| |Ω/G+|.

Proof. Observe first that G+ is a normal subgroup of G, implying that Ω/G+ is a G-invariant partition of

Ω. Let ω be an arbitrary element of Ω and let B = ωG
+

be its G+-orbit. Note that (GB)ω = Gω ≤ G+.
Since G+, in its action on B, is a transitive subgroup of GB , this implies that GB = G+(GB)ω = G+. Since
GB is the stabiliser of the element B in the induced action of G on Ω/G+, this implies that the kernel of this
action is G+, and that the induced faithful action of G/G+ on Ω/G+ is semiregular. In particular, |G/G+|
divides |Ω/G+|.

Since the stabiliser Z(G)ω of a vertex ω ∈ Ω is a normal subgroup of G contained in Gω, it follows that
Z(G)ω = 1. Let t = |G : Z(G)| and let

τ : G→ Z(G), x 7→ xt.

Then τ is a well-defined group homomorphism (see for example [17, Corollary 7.48]). Let K = Ker(τ).
Since |Z(G)Gω/Z(G)| = |Gω|, we see that the order of Gω divides t, and hence Gω is a subgroup of K,
implying that G+ ≤ K. Hence exp(N) divides t. The result now follows by the fact that exp(G) divides
exp(G+) exp(G/G+) and that |G : G+| divides |Ω/G+|. �
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A group G acts semiregularly on a set Ω provided that Gω = 1 for every ω ∈ Ω. We call the cardinality
of a smallest generating set of a group G the rank of G and denote it by rank(G). The following lemma can
be proved in many ways and we choose to use the tools from the theory of graph covers as described in [12]
(or see [13] for a more succinct explanation of the theory).

Lemma 5. If Γ is a connected graph and G a group of automorphisms of Γ acting semiregularly on V(Γ),
then rank(G) ≤ |E(Γ)/G| − |V(Γ)/G|+ 1.

Proof. For the purpose of this proof we shall use a more general notion of a graph, namely one that allows
parallel edges, loops and even semiedges (see [12, Section 3] or [13, Section 2.1] for exact definitions). Let
Γ′ := Γ/G be the quotient graph of Γ with respect to G as defined in [13, Section 2.2]. What follows mimics
the classical approach of the theory of covers of topological spaces with a small modification which is needed
due to the possible existence of semiedges in the Γ′ which arise from the edge-reversing elements in G.

Since G acts semiregularly on V(Γ) the corresponding quotient projection ℘G : Γ→ Γ′ is a regular covering
projection. The group of covering transformations (which is defined as the group of automorphisms of Γ′

preserving each fibre ℘−1
G (x) where x is either a vertex or a dart of Γ′) then equals the group G. By the

definition of the quotient graph, we have V(Γ′) = V(Γ)/G and E(Γ′) = E(Γ)/G.
Let π(Γ′, b) be the fundamental group based at a vertex b of Γ, as defined in [12, Section 3] (or [13,

Section 2.1]). Then (see [12, Section 3]) π(Γ′, b) is isomorphic to the free product of m copies of Z2 (where
m equals the number of semiedges in Γ′) and ` copies of Z. Moreover, m + ` equals the Betti number of
Γ′, which equals the number of cotree edges in Γ′ with respect to an arbitrary spanning tree of Γ′. Hence
rank(π(Γ′; b)) ≤ m+ ` = |E(Γ′)| − |V(Γ′)|+ 1.

Furthermore, using the procedure described in [13, Section 2.3], one can find a homomorphism ζ : π(Γ′, b)→
G (called the voltage assignment) which allows one to reconstruct the graph Γ from Γ′, G and ζ as the derived
covering graph with respect to the locally transitive Cayley voltage space (N ; ζ). One can easily see that
the derived covering graph is connected if and only if the corresponding homomorphism ζ : π(Γ′, b) → G
is surjective. Since Γ is assumed to be connected, this then implies that rank(G) ≤ rank(π(Γ′; b)) and the
result follows. �

If a group of automorphisms G of a graph Γ is such that the vertex-stabiliser Gv is transitive on the
neighbourhood Γ(v) for every v ∈ V(Γ), then Γ is said to be G-locally-arc-transitive. If Γ is a connected
G-locally-arc-transitive graph, then the group G+ has index at most 2 in G and has at most 2 orbits on
V(Γ). If Γ is bipartite, then the orbits of G+ coincide with the parts of the bipartition of Γ, and if Γ is not
bipartite, then G+ = G and G+ is arc-transitive.

Corollary 6. Let Γ be a finite connected G-locally arc-transitive graph not isomorphic to a complete bipartite
graph, such that G acts faithfully on each of its orbits. Let ε = 1 whenever Γ is bipartite and G-arc-transitive,
and let ε = 0 otherwise. Then exp(G) divides 2ε|G : Z(G)|.

Proof. Let Ω be an orbit of G in its action on V(Γ). Suppose first that Ω 6= V(Γ). Then Γ is bipartite, Ω is
a part of the bipartition of Γ and G = G+. In particular, ε = 0 and |Ω/G+| = 1. By assumption, the action
of G on Ω is faithful and hence G can be viewed as a transitive permutation group of Ω. By Lemma 4, it
follows that exp(G) divides |G : Z(G)|.

Suppose now that Ω = V(Γ). Then G is arc-transitive and G+ has at most 2 orbits on Ω. Lemma 4 then
yields that exp(G) divides 2|G : Z(G)|. Moreover, if ε = 0, then Γ not bipartite, and thus |Ω/G+| = 1. But
then exp(G) divides |G : Z(G)|, as claimed. �

If Γ is a connected graph and G ≤ Aut(Γ) such that for every vertex v ∈ V(Γ) the group G
Γ(v)
v is

quasiprimitive (and thus transitive), then we say that Γ is G-locally quasiprimitive. Note that such a graph
is automatically G-locally-arc-transitive. The following lemma is folklore, but for the sake of completeness
we provide the proof.

Lemma 7. Let Γ be a connected G-locally quasiprimitive graph. If G acts unfaithfully on one of its orbits
on V(Γ), then Γ is a complete bipartite graph.

Proof. Let Ω be an orbit of G in its action on V(Γ). If the action of G on Ω is not faithful, then V(Γ) 6= Ω
and hence Γ is bipartite and Ω is one of the two sets of the bipartition with the other set of the bipartition
being the second orbit of G. Let K be the kernel of the action of G on Ω. Since K 6= 1, there is a vertex
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u such that uK 6= {u}. Let v be a neighbour of u. Since K is a normal subgroup of Gv and since K acts
non-trivially on Γ(v), it follows that K is transitive on Γ(v) and hence Γ(v) = uK . But then Γ(u′) = Γ(u)
for every u′ ∈ Γ(v). Consequently, the neighbourhood Γ(v′) of every vertex v′ ∈ Γ(u) contains Γ(v) and
since v and v′ are in the same G-orbit, this implies that Γ(v) = Γ(v′). This shows that every walk starting
in v never leaves the set Γ(v) ∪ Γ(u). Since Γ is connected, this implies that V(Γ) = Γ(v) ∪ Γ(u) and thus Γ
is complete bipartite. �

Lemma 8. There exists an unbounded strictly increasing function F : R+ → R+ such that for every connected
G-locally-quasiprimitive graph Γ not isomorphic to a complete bipartite graph the following inequality holds:

|G : Z(G)| ≥ F (|G|).

Proof. Let Γ be a connected G-locally-quasiprimitive graph not isomorphic to a complete bipartite graph
and let Z = Z(G). Since

(5) |G| = |G : Z| |Z|,

it suffices to bound |Z| above in terms of |G : Z|. Since Γ is not a complete bipartite graph, it follows from
Lemma 7 that G acts faithfully on each of its orbits. By Corollary 6, it follows that exp(G) ≤ 2|G : Z|, and
since exp(Z) ≤ exp(G), we see that

(6) exp(Z) ≤ 2|G : Z|.

We will now establish an upper bound on the rank of Z. Since G acts faithfully on each of its orbits, the
vertex-stabiliser Zv is trivial for every v ∈ V(Γ) and thus Lemma 5 applies. In particular,

rank(Z) ≤ |E(Γ)/Z| − |V(Γ)/Z|+ 1 ≤ |E(Γ)/Z|.

Furthermore, since G acts transitively on E(Γ), it follows that G/Z acts transitively on E(Γ)/Z, implying
that

(7) rank(Z) ≤ |E(Γ)/Z| ≤ |G : Z|.

By combining (5), (6) and (7), we thus obtain:

(8) |G| = |G : Z| |Z| ≤ |G : Z| exp(Z)rank(Z) ≤ |G : Z| (2|G : Z|)|G:Z|.

Let F be the inverse of the (strictly increasing and bijective) function R+ → R+, x 7→ x(2x)x. The result
now follows by applying the function F on both sides of the inequality (8). �

3. Application to arc-transitive graphs

In this section we formulate and prove the main result of this paper (from which Theorem 1 follows easily).
The formulation of the theorem is rather technical and uses the notion of locally-quasiprimitive group actions
on graphs (introduced by Cheryl Praeger in [16]), and the notion of graph-restrictive permutation groups
(introduced by Gabriel Verret in [22]), which can be defined as follows.

Let Γ be a G-vertex-transitive graph. If the group G
Γ(v)
v , induced by the action of the vertex-stabiliser Gv

on Γ(v), is permutation isomorphic to some permutation group L, then we say that G is locally-L. Similarly,

if G
Γ(v)
v is a quasiprimitive permutation group, then we say that G is locally quasiprimitive. Following [22],

we say that a transitive permutation group L is graph-restrictive provided there exists a constant c = c(L)
such that whenever G is an arc-transitive, locally L group of automorphisms of a graph Γ, the order of the
stabiliser Gv is at most c(L).

Theorem 9. For every quasiprimitive and graph-restrictive permutation group L and every positive constant
α there exists an integer NL,α with the following property: If Γ is a connected X-arc-transitive graph with

|V (Γ)| > NL,α and if X
Γ(v)
v is permutation isomorphic to L for every vertex v, then

fprV(Γ)(g) < α

for every nontrivial element g of X.
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Remark 10. Determining which transitive permutation groups are graph-restrictive is a classical topic in
algebraic graph theory, going back to William Tutte, who showed in [21] that the symmetric group of degree
3 is graph-restrictive with the corresponding constant being 48. Similarly, it can be deduced from the work
of Anthony Gardiner [6] that the alternating group A4 and the symmetric group S4 (both of degree 4)
are graph restrictive, with corresponding constants c(A4) = 36 and c(S4) = 24 36. In [24, Conjecture 3.12],
Richard Weiss conjectured that every primitive permutation group is graph-restrictive. Weiss’ conjecture was
later strengthened by Cheryl Praeger, conjecturing that every quasiprimitive permutation group is graph-
restrictive. Even though both these conjectures are still open, one can deduce from the work of Richard
Weiss and Vladimir Trofimov that every doubly transitive group is graph-restrictive. The proof of this fact
can be found by putting together pieces from many papers, but a nice summary is given in the introduction
to a later paper by Weiss [26]. Together with another result of Richard Weiss [25], this also implies that
every permutation group of prime degree is graph-restrictive. In [19] and [20], the third-named author of
this paper proved that every primitive permutation group of affine type or of twisted wreath type is graph
restrictive (recall that a primitive permutation group is of affine type provided that it contains a non-trivial
abelian normal subgroup and of twisted wreath type if its socle is non-abelian and acts regularly); in short,
primitive permutation group whose socle (group generated by all minimal normal subgroups) acts regularly
on the points are graph-restrictive.

Other examples of graph-restrictive groups can be found in [7, 8, 22, 23], and a summary of all (at that
time) known graph-restrictive groups is given in [14]. However, to deduce Theorem 1 from Theorem 9, all
that needs to be remembered is that doubly-transitive permutation groups, primitive permutation groups of
affine or twisted wreath type and transitive permutation groups of prime degree are graph-restrictive.

The rest of the section is devoted to proving Theorem 9, and to a deduction of Theorem 1 from Theorem 9.
Let L be a quasiprimitive and graph-restrictive permutation group. If the degree of L (and thus the valence
of Γ) is 1 or 2, then the result clearly holds. We may thus assume that the degree of L is at least 3.

Let α > 0 and let Γ be a connected X-arc-transitive graph with Xv permutation isomorphic to L, satisfying

(9) fprV(Γ)(g) ≥ α

for some g ∈ X \{1X}. Let c := cL be the constant associated with graph-restrictive group L; then |Xv| ≤ c.
We need to show that |V(Γ)| is bounded above by some constant N depending only on L and α. Without

loss of generality we may assume that Γ is not a complete bipartite graph and moreover that |V(Γ)| ≥ 1/α
which together with the assumption fprV(Γ)(g) ≥ α implies that g fixes at least one vertex of Γ. Since Γ is

connected and g is a nontrivial automorphism, it then follows that there exists a vertex v ∈ V(Γ) fixed by
g, such that g acts nontrivially on the neighbourhood Γ(v).

Let G = 〈gX〉. Then G is normal in X, implying that Gv is a normal subgroup of Xv. Since g ∈ Gv,
it follows that Gv acts non-trivially on Γ(v). Since X

Γ(v)
v is quasimprimitive, this implies that Gv acts

transitively on Γ(v). Moreover, since G is normal in a vertex-transitive group X, it follows that Gu is
transitive on Γ(u) for every u ∈ V(Γ); that is, Γ is G-locally arc-transitive. Since G ≤ X, it follows that

(10) |Gv| ≤ c.

Moreover, since G has at most 2 orbits on V(Γ), it follows that

(11) |X : G| = |V(Γ)||Xv|
|vG||Gv|

≤ 2|Xv : Gv| ≤ |Xv| ≤ c.

By Lemma 8 we also see that

(12) |G : Z(G)| ≥ F (|G|).

for some fixed unbounded strictly increasing function F : R+ → R+, and by Lemma 3 it follows that

(13) fprV(Γ)(g) ≤ |Gω| |X : G| f(|G : Z(G)|)

for some fixed strictly decreasing function f : [1,∞)→ R+ such that limx→∞ f(x) = 0. Combining inequal-
ities (10), (11), (12) and (13), we see that

α ≤ fprV(Γ)(g) ≤ c2ϕ(|G|)
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where ϕ := f ◦F is a strictly decreasing function such that limx→∞ ϕ(x) = 0. By dividing by c2 and applying
the inverse of ϕ, one thus concludes that

|G| ≤ ϕ−1(α/c2).

Since |V(Γ)| ≤ 2|G|/|Gv| ≤ |G| this yields an upper bound NL,α := ϕ−1(α/c2) for |V(Γ)| which depends only
on α and L. In particular, if |V (Γ)| > NL,α, then the assumption (9) must be false. Hence |V (Γ)| ≤ NL,α.
This finishes the proof of Theorem 9.

Theorem 1 now follows easily from Theorem 9 and Remark 10. Indeed, let α be a positive constant, let G
be a transitive permutation group acting on a finite set Ω, let ω ∈ Ω and let Σ = δGω be a self-paired suborbit
yielding a connected orbital graph Γ. Then V(Γ) = Ω, E(Γ) = {{ωg, δg} : g ∈ G} and Γ is a G-arc-transitive
graph of valence |Σ|. Suppose in addition that either |Σ| is a prime number or that the permutation group
GΣ
ω induced by the action of Gω on Σ is doubly-transitive or primitive of affine type. Then L := GΣ

ω is clearly
a primitive permutation group and in view of Remark 10, it is also graph-restrictive. By Theorem 9, there
exists a constant cα := NL,α such that fprV(Γ)(g) < α for every g ∈ G \ {1}. In particular, rfxΩ(G) ≤ α,
thus proving Theorem 1.
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