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We study Hartnell’s firefighter problem on infinite trees and characterise the
branching number in terms of the firefighting game. Using our results about
trees, we give a partial answer to a question of Martinez-Pedroza concerning
firefighting on Cayley graphs.

1 Introduction

In 1995 Hartnell [6] introduced the firefighting game which can be described as follows.
Before the first round of the game, an antagonist sets some subset of the vertices of a
graph G on fire. Then, in each round n, we can protect f, vertices whereafter the fire
spreads to all unprotected neighbours of burning vertices. Once a vertex is burning or
protected, it remains in that state for the rest of the game. This can for example be seen
as a model for the spread of a perfectly contagious disease with no cure, see [I]. The act
of protecting vertices at each time step, could then be viewed as vaccinations.

There are several different goals that we might want to pursue, e.g. minimise number
of rounds or number of burnt vertices, or save a certain set of vertices or a given fraction
of the vertices from being burnt. The survey paper [3| gives an overview on different
lines of research concerning the firefighting game.

In this paper we will focus on the question of containment. We say that a fire can
be contained on an infinite graph if we can prevent it from spreading to infinitely many
vertices. An infinite graph G satisfies fj,-containment, if any finite initial fire can be
contained by protecting f,, vertices in round n.

Containment was first studied in grids, the first results being that certain planar grids
satisfy constant containment, i.e. containment for f, = ¢, see [I, [II]. Develin and
Hartke [I] showed that higher dimensional square grids do not satisfy constant contain-
ment. However, it is easy to see that they satisfy f,,-containment for some polynomial
fn. In fact, Dyer, Martinez-Pedroza, and Thorne [2] showed that every graph with poly-
nomial growth of degree d has the ¢ - n~2-containment property for some constant c.

We study the question of exponential containment. We say that a graph satisfies
exponential containment of rate A if it satisfies f,,-containment for some f, = O(A"). It
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is easy to see that for every graph G there is a threshold A, such that for every A > A,
it satisfies exponential containment of rate A whereas for A < A. it doesn’t.

We prove that if T' is a tree, then A, coincides with the branching number br 7T of this
tree (see the next section for a definition). It is worth noting that the branching number
also shows up as a threshold in different problems. It marks the transition from transience
to recurrence of the homesick random walk on a tree and br% is the percolation threshold
on an infinite tree, see |7]. This naturally leads to the question if this is coincidence or
there is a deeper connection between firefighting and random processes on graphs.

As an application of our results about trees we make progress towards a question of
Martinez-Pedroza [10]. He showed that Cayley graphs of non-amenable groups do not
have the polynomial containment property and asked whether polynomial containment
always implies polynomial growth for Cayley graphs. We show that for a Cayley graph
with exponential growth of rate o we have A\, = «a. This implies that Cayley graphs
of exponential growth can never satisfy polynomial containment, only leaving open the
notoriously difficult case of groups with intermediate growth.

2 Preliminaries

Throughout this paper G = (V, E) denotes a graph with vertex set V and edge set E.
All graphs considered will be connected and locally finite.

The firefighting game is defined as follows: Let G be an infinite graph and let (fy,)nen
be a sequence of integers. Before the first round, a finite set X of vertices of G are
defined as burning. In round n, the player can pick f,, vertices which are not burning to
mark as protected. Afterwards every unprotected vertex which is adjacent to a burning
vertex is marked as burning. Note that once a vertex is marked as burning or protected,
it remains in that state until the end of the game.

The player wins the game, if after finitely many rounds no new vertices are marked
as burning—in this case we say that the fire is contained. A containment strategy for
an initial fire X is a map s from N to the power set of V', where |s(n)| < f,, such that
marking all vertices in s(n) as protected in round n leads to containment.

A graph satisfies f,-containment, if there is a containment strategy (with respect to
the sequence f,) for any initial fire Xy. A graph G satisfies exponential containment of
rate A if there is f,, = O(\") such that G satisfies f,,-containment. Clearly, if G satisfies
exponential containment of rate A, then it also satisfies exponential containment of any
rate A’ > \. Hence there is a critical rate A\, such that for A < \., the graph G does not
satisfy exponential containment of rate A, whereas for A > \. it does.

Let r € V and assume that G is rooted at r. For a vertex or edge = denote by |z| the
length of a shortest path containing both r and x. Define the ball of radius k with center
r by Br(k)={ve V||| <k}

The (exponential) growth rate of a graph is defined by gr G = limy_, (| By (k)|) if the
limit exists. Note that if the growth rate exists, then it does not depend on the base
point r.

For a tree T the branching number brT provides another measure for growth. It was



first studied by Furstenberg [5], and later formally defined by Lyons [7] who pointed out
its close connections to random walks and percolation on trees. For a tree T rooted at r
define

brT := sup {)\ | 3 non-zero flow 6 from r to co s.t. O(e) = A_‘el} .

By a variant of the well known max-flow min-cut theorem we get the following equiv-

alent definition:
T = inf » " A~
br sup{)\\uﬁ EEH)\ >0},

where the infimum runs over all cutsets II C E whose removal leaves the root 7 in a finite
component.

3 Trees

In this section we determine the critical rate A. for exponential containment on trees. It
turns out that A\, equals the branching number. Hence, our main theorem can be used to
define the branching number in terms of the firefighter game. We first prove two lemmas
which tell us that in order to show containment for a tree 1" it suffices to study a very
restricted set of strategies.

Lemma 1. Let T be a tree rooted at r. Then T satisfies fp-containment if and only if
there is a containment strategy for each B, (k),k € N.

Proof. The forward direction is trivial: if there is a winning strategy for every finite set,
then there is a winning strategy for every B,.(k). Conversely, if X is any finite set, then
there is some B, (k) such that Xy C B, (k). So the vertices on fire at step n for starting
set B (k) is a subset of the vertices on fire for starting set Xy. Hence a winning strategy
for B, (k) is also winning for Xj. O

Let V' C V be a finite set of vertices. We can define a strategy s(V') by n — Sy,
where S, is the set containing the f, vertices in V' that are closest to the root and
neither burning nor protected.

Lemma 2. Let T be a tree rooted at r and assume that the set of vertices initially on
fire is By.(k). If there is a containment strategy, then there is a containment strategqy of

the form s(V').

Proof. Let s be any successful containment strategy for starting set B,(k). Let Xg be
the final set of vertices on fire after the successful containment strategy is played. Let
V' be the set of vertices in V' \ Xp which have a neighbour in Xz and denote by s’ the
strategy defined as above. Note that since T is a tree, V/ contains exactly one vertex on
every ray starting at r. Now if a vertex vy € V' was on fire before it is played in s’, then

n—k
{oeV': ol <n} > f
=1



where n = |vg|. This means that s can’t protect all vertices in {v € V': |v| < n} before
step n. But then X can’t be the set of vertices on fire after s is played: since T is a
tree, all vertices at distance n are on fire after kK — n steps, unless a vertex of the unique
path from r has been played before. O

We are now ready to prove the main theorem of this paper.
Theorem 3. If T is an infinite, locally finite tree, then A, = brT.

Proof. We first show that A, < brT. Clearly it suffices to show that for every A > brT
there is a successful containment strategy with f, = [A"]|. Hence let A\ > br7T and
assume that the starting set is B, (k). Since

inf ) Al =0
nf> ,
ecll
we can pick a cutset II whose removal leaves r in a finite component such that

oA <

e€ll

where € is chosen in a way that e- A" < |\"7%|. Let V' be the set containing the endpoint
of each e € II which is further away from r. Let V! := {v € V': |u| = n}. Then

ey A= AP N AP =y

e€ll veV’ veV,,

whence

V| <e- AV < | AR

This implies that we can play the set V! at step n — k (i.e. before the fire reaches level
n). Hence the fire is contained below V’ and the strategy is successful.

To show that A. > brT it suffices to show that there is no containment strategy for
fn = |A"] for any A < brT'. Indeed, this implies that there is no containment strategy for
fn = 0(A"), and since we can choose A arbitrarily close to br T, it follows that A, > brT.

Hence let A < brT. Let C be a constant such that

n

SN <Cam

i=1

Choose 1 such that A < p < brT. Note that since p < brT, there is some € > 0 such
that for every cutset I1 we have
Z plel > e

ecll

C- i (2)i<e.

i=k+1

Finally let k be such that



We now claim that with k chosen as above, there is no successful containment strategy
for Xo = B,(k). Assume there was one, then there is one of the form s(V’). Since
s(V') is assumed to be a containment strategy, removing V'’ from G leaves r in a finite
component. Let II C E be the set containing for every v’ € V' the first edge of the path
from v’ to r. Then II is a cutset whose removal leaves 7 in a finite component.

Let V; := {v € V': [u| = n}. Since our strategy is successful we know that every
vertex in V' is played before it catches fire. In particular

n—k
Vil <Y N < Ceam

i=1

Furthermore |V;)| = 0 for n < k because we can never play any vertex which is initially
on fire. Putting all of the above together we get

e<y =Y = 3 Y s Y C N < Y <2>Z<e,

e€ll veV’ i=k+1veV; i=k+1 i=k-+1

which is a contradiction. O

4 Cayley graphs

In this section we use the main result of the previous section as well as some known
results about Cayley graphs to determine the exponential containment threshold A, for
Cayley graphs.

For this purpose we need the following definition. Let 1" be a tree rooted at r. For a
vertex v define T}, to be the subtree of T rooted at v, i.e. let e be the first edge of the
unique path from v to r, then T}, is the component of 7' — e which contains v (rooted at
v). The tree is called subperiodic, if there is k& € N such that for every v there is v" with
|v'| < k and T, embeds into T,/ as a subtree in a way that maps v to v'.

Furstenberg [4] showed that for a subperiodic tree the growth rate exists and coincides
with the branching number, see [9] for a graph theoretic proof.

Let " be a group and let G be a Cayley graph of I' with respect to the generating set
{z1,...,2}. The following construction due to Lyons [8] gives a subperiodic spanning
tree of G with the same exponential growth rate as G: For every v € I' there is a unique
word [v] = (i, ..., ;) such that

- xil...xil =
- [ is the distance from v to id in G, and
- [v] is lexicographically minimal among all words with the first two properties.

Now the graph with vertex set I" and an edge from v to w if [v] is an extension of [w] by
one letter (or vice versa) is easily seen to be a subperiodic spanning tree, rooted at id.
From this we can now deduce the following result.



Theorem 4. Let G be a Cayley graph of a group with exponential growth rate o. Then
o (G satisfies exponential containment of any rate A > «,
e (G does not satisfy exponential containment of any rate A\ < «.

Proof. For the first part consider the following strategy: Note that if the fire initially is
contained in a ball with radius k& about some vertex, then at step n it will be contained
in a ball of radius k& + n. Wait until A" is larger than the boundary of this ball, then
play all vertices in this boundary at once. This is possible since A" asymptotically grows
quicker than |B,(k+mn+1)| and hence also faster than the boundary of the ball of radius
k+n.

For the second part note that if G satisfies exponential containment of some rate
A, then so does every subgraph of G. But the subperiodic spanning tree of G with
exponential growth rate a does not satisfy exponential containment of any rate A < «

by Theorem O

Corollary 5. A Cayley graph of a group with exponential growth never satisfies polyno-
maeal containment.

Proof. For any d, A € R we have n? = o(\"). O
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