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Abstract

We introduce the endomorphism distinguishing number De(G) of a graph G

as the least cardinal d such that G has a vertex coloring with d colors that is
only preserved by the trivial endomorphism. This generalizes the notion of the
distinguishing number D(G) of a graph G, which is defined for automorphisms
instead of endomorphisms.

As the number of endomorphisms can vastly exceed the number of automor-
phisms, the new concept opens challenging problems, several of which are presented
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here. In particular, we investigate relationships between De(G) and the endomor-
phism motion of a graph. Moreover, we extend numerous results about the distin-
guishing number of finite and infinite graphs to the endomorphism distinguishing
number. This is the main concern of the paper.

Keywords: Distinguishing number; Endomorphisms; Infinite graphs;

1 Introduction

Albertson and Collins [1] introduced the distinguishing number D(G) of a graph G as the
least cardinal d such that G has a labeling with d labels that is only preserved by the
trivial automorphism.

This concept has spawned numerous papers, mostly on finite graphs. But countable
infinite graphs have also been investigated with respect to the distinguishing number; see
[9], [15], [16], and [17]. For graphs of higher cardinality compare [10].

The aim of this paper is the presentation of fundamental results for the endomor-
phism distinguishing number, and of open problems. In particular, we extend the Motion
Lemma of Russell and Sundaram [14] to endomorphisms, present an Endomorphism Mo-
tion Conjecture, which generalizes the Infinite Motion Conjecture of [4], prove the validity
of two special cases, and support the conjecture by examples.

2 Definitions and Basic Results

As the distinguishing number has already been defined, let us note that D(G) = 1 for all
asymmetric graphs. This means that almost all finite graphs have distinguishing number
1, because almost all graphs are asymmetric, see Erdős and Rényi [5]. Clearly D(G) ⩾ 2
for all other graphs. Again, it is natural to conjecture that almost all of them have
distinguishing number 2. This is supported by the observations of Conder and Tucker [3].

However, for the complete graph Kn, and the complete bipartite graph Kn,n we have
D(Kn) = n, and D(Kn,n) = n + 1. Furthermore, the distinguishing number of the cycle
of length 5 is 3, but cycles Cn of length n ⩾ 6 have distinguishing number 2.

This compares with a more general result of Klavžar, Wong and Zhu [12] and of Collins
and Trenk [2], which asserts that D(G) ⩽ Δ + 1, equality holding if and only if G is a
Kn, Kn,n or C5.

Now to the endomorphism distinguishing number. Before defining it, let us recall that
an endomorphism of a graph G = (V,E) is a mapping � : V → V such that for every
edge uv ∈ E its image �(u)�(v) is an edge, too.

Definition The endomorphism distinguishing number De(G) of a graph G is the least
cardinal d such that G has a labeling with d labels that is preserved only by the identity
endomorphism of G.
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Let us add that we also say colors instead of labels. If a labeling c is not preserved by an
endomorphism �, we say that c breaks �.

Clearly D(G) ⩽ De(G). For graphs G with Aut(G) = End(G) equality holds. Such
graphs are called core graphs. Notice that complete graphs and odd cycles are core graphs,
see [7]. Hence De(Kn) = n, De(C5) = 3, and De(C2k+1) = 2 for k ⩾ 3.

Interestingly, almost all graphs are core graphs, as shown by Koubek and Rödl [13].
Because almost all graphs are asymmetric, this implies that almost all graphs have trivial
endomorphism monoid, that is, End(G) = {id}. Graphs with trivial endomorphism
monoid are called rigid. Clearly De(G) = 1 for any rigid graph G, and thus De(G) = 1
for almost all graphs G.

De(G) can be equal to D(G) even when Aut(G) ⊊ End(G). For example, this is the
case for even cycles. We formulate this as a lemma.

Lemma 1 The automorphism group of even cycles is properly contained in their endo-
morphism monoid, but D(C2k) = De(C2k) for all k ⩾ 2.

Proof. It is easily seen that every even cycle admits proper endomorphisms, that is,
endomorphisms that are not automorphisms. Furthermore, it is readily verified that
D(C4) = De(C4).

Hence, let k ⩾ 3. Color the vertices v1, v2 and v4 black and all other vertices white,
see Figure 1. We wish to show that this coloring is endomorphism distinguishing. Clearly
this coloring distinguishes all automorphisms.

v1 v2

v3

v4

v5

v2k−1

v2k

Figure 1: Distinguishing an even cycle

Let � be a proper endomorphism. It has to map the cycle into a proper subgraph of
itself. Thus, �(C2k) must be a path, say P .

Furthermore, all edges with only white, resp. black, endpoints must be mapped into
edges that have only white, resp. black, endpoints. Hence v1v2 is mapped into itself.
Because v2k−1v2k is the only edge with two white endpoints that is adjacent to v1v2, it
must also be mapped into itself. This fixes v2k−1, v2k, v1 and v2. But then v3 and v4 are
also fixed.

Now we observe that the path v4v5 ⋅ ⋅ ⋅ v2kv1 in C2k has only white interior vertices and
that it it has to be mapped into a walk in P from v4 to v1 that contains only white interior
vertices. Clearly this is not possible. □
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To show that D(G) can be smaller than De(G), we consider graphs G with trivial
automorphism group but nontrivial endomorphisms monoid. For such graphs D(G) = 1,
but De(G) > 1. Easy examples are asymmetric, nontrivial trees T . For, every such tree
has at least 7 vertices and at least three vertices of degree 1. Let a be a vertex of degree
1 and b its neighbor. Because T has at least 7 vertices and since it is connected, there
must be a neighbor c of b that is different from s. Then the mapping

� : v 7→

{

c if v = a
v otherwise

is a nontrivial endomorphism.

3 The Endomorphism Motion Lemma

Russel and Sundaram [14] proved that the distinguishing number of a graph is small when
every automorphism of G moves many elements. We generalize this result to endomor-
phisms and begin with the definition of motion.

The motion m(�) of a nontrivial endomorphism � of a graph G, is the number of
elements it moves:

m(�) = ∣{v ∈ V (G) ∣ �(v) ∕= v}∣.

The endomorphism motion of a graph G is

me(G) = min
�∈End(G)∖{id}

m(�)

For example, me(C4) = 1, me(C5) = 4, me(C100) = 49, me(K100) = 2.
In the sequel we will prove the following generalization of Theorem 1 of Russell and

Sundaram [14].

Lemma 2 (Endomorphism Motion Lemma) For any graph G

d
me(G)

2 ⩾ ∣End(G)∣ (1)

implies De(G) ⩽ d.

To prepare for the proof we define orbits of endomorphisms.

Definition An orbit of an endomorphism � of a graph G is an equivalence class with
respect to the equivalence relation ∼ on V (G), where u ∼ v if there exist nonnegative
integers i and j such that �i(u) = �j(v).

The orbits form a partition V (G) = I1 ∪ I2 ∪ ⋅ ⋅ ⋅ ∪ Ik, Ii ∩ Ij = ∅ for 1 ⩽ i < j ⩽ k, of
V (G). For finite graphs it can be characterized as the unique partition with the maximal
number of sets that is invariant under �−1. For infinite graphs we characterize it as the
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finest partition that is invariant under �−1. For automorphisms it coincides with the cycle
decomposition.

The orbit norm of an endomorphism � with the orbits I1, I2, . . . , Ik is

o(�) =
k

∑

i=1

(∣Ii∣ − 1) ,

and the endomorphism orbit norm of a graph G is

o(G) = min
�∈End(G)∖{id}

o(�) .

Notice that � may not move all elements of a nontrivial orbit, whereas automorphisms
move all elements in a nontrivial cycle of the cycle decomposition. To see this, consider
an orbit I = {a, b}, where �(a) = b, and �(b) = b. Only one element of the orbit is moved,
and the contribution of I to the orbit norm of � is 1. Clearly o(�) ⩾ m(�)/2, and thus
o(G) ⩾ me(G)/2.

Proof of Lemma 2 Let n = ∣V (G)∣. For any nonidentity � ∈ End(G), the number
of d-colorings preserved by � is do(�), because each orbit must get the same color. There
are n−m(�) singleton orbits and the rest falls into at most m(�)/2 orbits. Thus

o(�) ⩽ n−m(�) +m(�)/2 ⩽ n−me(G)/2.

We conclude that the number of d-colorings that are preserved by all endomorphisms is at
most (∣End(G)∣−1) dn−me(G)/2. If dme(G)/2 > ∣End(G)∣−1, then the number of d-colorings
preserved is less than the total number dn of d-colorings. Thus if dme(G)/2 ⩾ ∣End(G)∣, we
have De(G) = d. □

This proof is an adaptation of the proof in [11] of the Motion Lemma for the distin-
guishing number. Of course, Lemma 2 is also an easy consequence of the Orbit Norm
Lemma.

Lemma 3 (Orbit Norm Lemma) A graph G is endomorphism d-distinguishable if

∑

�∈End(G)∖{id}

d−o(�) < 1.

Proof. We study the behavior of a random d-coloring c of G, the probability distribu-
tion given by selecting the color of each vertex independently and uniformly in the set
{1, . . . , d}. Fix an endomorphism � ∕= id and consider the bad event that the random
coloring c is preserved by �, that is, c(v) = c(�(v)) for each vertex v of G. Then it is
easily seen that

Probc[∀v : c(v) = c(�(v))] =

(

1

d

)o(�)

⩽

(

1

d

)o(G)

.
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Collecting together these bad events, we have

Probc[∃� ∕= id∀v : c(v) = c(�(v))] ⩽
∑

�∈End(G)∖{id}

(

1

d

)o(�)

.

By hypothesis the left side is less than one, thus there exists a coloring c such that for all
nontrivial � there is a v, such that c(v) ∕= c(�(v)), as desired. □

Lemma 2 compares with Theorem 1 of Russell and Sundaram [14]. It asserts that G
is 2-distinguishable if

m(G) > 2 log2 ∣Aut(G)∣ ,

where
m(G) = min

�∈Aut(G)∖{id}
m(�) .

Actually Russell and Sundaram prove that G is d-distinguishable under the assumption
m(G) > 2 logd ∣Aut(G)∣. Furthermore, a close look at their proof shows that it suffices to
require that

m(G) ⩾ 2 logd ∣Aut(G)∣. (2)

Thus, our Endomorphism Motion Lemma is a direct generalization of their result that
Equation 2 implies d-distinguishability. We will refer to it as the Motion Lemma, or the
Motion Lemma of Russell and Sundaram.

The Motion Lemma allows to compute the distinguishing number of many classes of
finite graphs. We know of no such applications for the Endomorphism Motion Lemma,
but will show the applicability of its generalization to infinite graphs.

4 Infinite graphs

Suppose we are given an infinite graph G with infinite endomorphism motion me(G) and
wish to generalize Equation 1 to this case for finite d. Notice that

dme(G)/2 = dme(G) = 2me(G)

in this situation. Thus the natural generalization would be that

2me(G) ⩾ ∣End(G)∣ (3)

implies endomorphism 2-distinguishabilty. We formulate this as a conjecture.

Endomorphism Motion Conjecture. Let G be a connected, infinite graph with
endomorphism motion me(G). If 2me(G) ⩾ ∣End(G)∣, then De(G) = 2.

Let us consider the case where G is countable first. If me(G) is infinite, then me(G) =
ℵ0 and 2me(G) = 2ℵ0 = c, where c denotes he cardinality of the continuum.
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Furthermore, for countable graphs we have ∣End(G)∣ ⩽ ℵℵ0
0 = 2ℵ0 = c. This means

that Equation 3 is always satisfied for countably infinite graphs with infinite motion. This
motivates the following conjecture.

Infinite Endomorphism Motion Conjecture. Let G be a countable connected
graph with infinite endomorphism motion. Then G is endomorphism 2-distinguishable.

In the last section we will verify this conjecture for countable trees with infinite en-
domorphism motion. Their endomorphism monoids are uncountable and we will see that
they have endomorphism distinguishing number 2.

We now show the validity of the conjecture for countable endomorphism monoids. In
fact, we can show an even stronger result, namely that in the case of graphs with countable
endomorphism monoid almost every coloring is distinguishing.

Theorem 4 Let G be a graph with infinite motion whose endomorphism monoid is count-
able. Let c be a random 2-coloring where all vertices have been colored independently and
assume that there is an " > 0 such that for every vertex v the probability that it is assigned
the color x ∈ {black,white} satisfies

" ⩽ Prob [c(v) = x] ⩽ 1 − ".

Then c is almost surely distinguishing.

Proof. First, let � ∈ End(G) be a fixed endomorphism of G. Since the motion of �
is infinite we can find infinitely many disjoint pairs {vi, �(vi)}. Clearly the colorings of
these pairs are independent and the probability that � preserves the coloring in any of
the pairs is bounded from above by some constant "′ < 1. Now

Prob [� preserves c] ⩽ Prob [∀i : c(vi) = c(�(vi))] = 0.

Since there are only countably many endomorphisms we can use �-subadditivity of
the probability measure to conclude that

Prob [∃� ∈ End(G) : � preserves c] ⩽
∑

�∈End(G)

Prob [� preserves c] = 0

which completes the proof. □

We will usually only use the following Corollary of Theorem 4.

Corollary 5 Let G be a graph with infinite motion whose endomorphism monoid is count-
able. Then

De(G) = 2.
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An analogue of the endomorphism motion conjecture for countable structures for the
distinguishing number is

Infinite Motion Conjecture of Tucker [15]. Let G be a connected, locally finite infinite
graph with infinite motion. Then G is 2-distinguishable.

The same proof as the one of Theorem 4 shows that the conjecture is true if Aut(G)
is countable, see [4]. There are numerous applications of this result, see [11].

For the Infinite Endomorphism Motion Conjecture we have the following theorem. It
is an immediate generalization of [10, Theorem 3.2].

Theorem 6 Let Γ be a finitely generated infinite group. Then there is a 2-coloring of
the elements of Γ, such that the identity endomorphism of Γ is the only endomorphism
that preserves this coloring. In other words, finitely generated groups are endomorphism
2-distinguishable.

Proof. Let S be a finite set of generators of Γ that is closed under inversion. Since every
element g of Γ can be represented as a product s1s2 ⋅ ⋅ ⋅ sk of finite length in elements of
S, we infer that Γ is countable.

Also, if � ∈ End(Γ), then

�(g) = �(s1s2 ⋅ ⋅ ⋅ sk) = �(s1)�(s2) ⋅ ⋅ ⋅�(sk).

Hence, every endomorphism � is determined by the finite set

�(S) = {�(s) ∣ s ∈ S}.

Because every �(s) is a word of finite length in elements of S there are only countably
many elements in �(S). Hence End(Γ) is countable.

Now, let us consider the motion of the nonidentity elements of End(Γ). Let � be such
an element and consider the set

Fix(�) = {g ∈ Γ ∣ �(g) = g}.

It is easily seen that these elements form a subgroup of Γ. Since � does not fix all elements
of Γ it is a proper subgroup. Since its smallest index is two, the set Γ ∖ Fix(�) is infinite.
Thus m(�) is infinite. As � was arbitrarily chosen, Γ has infinite endomorphism motion.

By Corollary 5 we conclude that Γ is 2-distinguishable. □

The next theorem shows that the endomorphism motion conjecture is true if me(G) =
∣End(G)∣, even if me(G) is not countable.

Theorem 7 Let G be a connected graph with uncountable endomorphism motion. Then
∣End(G)∣ ⩽ me(G) implies De(G) = 2.
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Proof. Set n = ∣End(G)∣, and let � be the smallest ordinal number whose underlying set
has cardinality n. Furthermore, choose a well ordering ≺ of A = End(G) ∖ {id} of order
type � , and let �0 be the smallest element with respect to ≺. Then the cardinality of the
set of all elements of A between �0 and any other � ∈ A is smaller than n ⩽ me(G).

Now we color all vertices of G white and use transfinite induction to break all endo-
morphisms by coloring selected vertices black. By the assumptions of the theorem, there
exists a vertex v0 that is not fixed by �0. We color it black. This coloring breaks �0.

For the induction step, let  ∈ A. Suppose we have already broken all � ≺  by pairs
of vertices (v�, �(v�)), where v� and �(v�) have distinct colors. Clearly, the cardinality of
the set R of all (v�, �(v�)), � ≺  , is less than n ⩾ me(G). By assumption,  moves at
least me(G) vertices. Since there are still n vertices not in R, there must be a vertex v 
that does not meet R. If  (v ) is white, we color v black. Otherwise, we color it white.
This coloring breaks  . □

Corollary 8 Let G be a connected graph with uncountable endomorphism motion. If the
general continuum hypothesis holds, and if ∣End(G)∣ < 2me(G), then De(G) = 2.

Proof. By the generalized continuum hypothesis 2me(G) is the successor of me(G). Hence,
the inequality 2me(G) > ∣End(G)∣ is equivalent to me(G) ⩾ ∣End(G)∣. □

5 Examples and outlook

So far we have only determined the endomorphism distinguishing numbers of core graphs,
such as the complete graph and odd cycles, and proved that De(C2k) = 2 for k ⩾ 3.
Furthermore, it is easily seen that De(Kn,n) = n+1 and De(Km,n) = max(m,n) if m ∕= n.

In the case of infinite structures we proved Theorem 6, which shows that De(Γ) = 2
for finitely generated, infinite groups Γ.

We will now determine the endomorphism distinguishing numbers of finite and infinite
paths and we begin with the following lemma.

Lemma 9 Let � be an endomorphism of a (possibly infinite) tree G such that �(u) = �(v)
for two distinct vertices u, v. Then there exist two vertices x, y on the path between u and
v such that �(x) = �(y) and dist(x, y) = 2.

Proof. Suppose dist(u, v) ∕= 2. Hence dist(u, v) > 2. Let P be the path connecting u
and v in G, and let P ′ be the subgraph induced by the image �(P ). Clearly, P ′ is a finite
tree with at least one edge.

Because every nontrivial finite tree has at least two pendant vertices, there must be
a pendant vertex w of P ′ that is different from �(u) = �(v). Thus w = �(z) for some
internal vertex z of P . If x and y are the two neighbors of z on P , then clearly �(x) = �(y)
and dist(x, y) = 2. □

The above lemma implies the following corollary for finite graphs, because any injective
endomorphism of a finite graph is an automorphism.
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Corollary 10 Let G be a finite tree. Then for every � ∈End(G)∖Aut(G) there exist two
vertices x, y of distance 2 such that �(x) = �(y). □

Lemma 11 The endomorphism distinguishing number of all finite paths Pn of order n ⩾ 2
is two.

Proof. Clearly, De(Pn) ⩾ 2 since End(Pn) ∕= Aut(Pn). To see that De(Pn) = 2 consider
the following labeling

c(Pn) =

⎧





⎨





⎩

(11221122.....1122) if n ≡ 0 mod 4
(11221122...11221) if n ≡ 1 mod 4
(1221122.....22112) if n ≡ 2 mod 4
(11221122...22112) if n ≡ 3 mod 4

.

The only nontrivial automorphism of a path (symmetry with respect to the center) does
not preserve this labeling. By Corollary 10, any other endomomorphism � ∈ End(G) ∖
Aut(G) has to identify two vertices of distance two. Then � cannot preserve the coloring,
because any two vertices of distance two have distinct labels. □

Next let us consider the ray and the double ray which can be viewed as an infinite
analogons to finite paths. It turns out that their endomorphism distinguishing number is
2 as well.

Lemma 12 The endomorphism distinguishing number of the infinite ray and of the infi-
nite double ray is two.

Later in this section Theorem 15 will show that every countable tree with at most one
pendant vertex has endomorphism distinguishing number two. Clearly Lemma 12 consti-
tutes a special case of this result. It is also worth noting that by the following theorem
every double ray has infinite endomorphism motion. Hence we verify the Endomorphism
Motion Conjecture for the class of countable trees.

Theorem 13 A tree has infinite endomorphism motion if and only if it has no pendant
vertices.

The proof uses the following lemma which may be interesting on its own behalf. Note
that in the statement of the lemma there is no restriction on the cardinality of the tree
or the motion of the endomorphism.

Lemma 14 Let T be a tree and let � be an endomorphism of T . Then the set of fixed
points of � induces a connected subgraph of T .
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Proof. Denote by Fix(�) the set of fixed points of � and assume that it does not induce
a connected subgraph. Consider two vertices v1, v2 ∈ Fix(�) lying in different components
of this graph.

Then � maps the unique path in T from v1 to v2 to a v1-v2-walk of the same length.
But the only such walk is the path connecting v1 and v2, so this path has to be fixed
pointwise.

Proof of Theorem 13. Clearly, if a tree has a pendant vertex then there is an
endomorphism which moves only this vertex and fixes everything else.

So let T = (V,E) be a tree without pendant vertices and let � be a nontrivial endo-
morphism of T . Assume that the motion of � was finite. Then the set Fix(�) of fixed
points of � contains all but finitely many vertices of T . Since T has no pendant vertices
such a set does not induce a connected subgraph. This contradicts Lemma 14. □

Now that we have characterised the trees with infinite endomorphism motion, we
would like to show that all of them have endomorphism distinguishing number 2. The
following proof is due to F. Lehner.

Theorem 15 The endomorphism distinguishing number of countable trees T with at
most one pendant vertex is 2.

Proof. The proof consists of two stages. First we color part of the vertices such that
every endomorphism which preserves this partial coloring has to fix all distances from
a given vertex v0. Then we color the other vertices in order to break all remaining
endomorphisms.

For the first part of the proof, let v0 be a pendant vertex of T , or any vertex if T is a
tree without pendant vertices. Denote by Sn the set of vertices at distance n from v0, that
is the sphere of radius n with center v0. Now color v0 white and all of S1 and S2 black.
Periodically color all subsequent spheres according to the pattern outlined in Figure 2. In
other words always color two spheres white, then four spheres black, one white, leave one
sphere uncolored, color another four spheres black and proceed inductively. Furthermore,
we require that vertices in the uncolored sphere Sk which have the same predecessor in
Sk−5 should be assigned the same color.

Now we claim that this coloring fixes v0 in every endomorphism. To prove this consider
a ray v0v1v2v3 . . . starting at v0. Clearly vi ∈ Si holds for every i. Assume that there is
a color preserving endomorphism � of T which does not fix v0 and consider the image of
the previously chosen ray under �, that is, let ṽi = �(vi). Clearly ṽ0 has to lie either in a
white sphere or in a sphere which has not yet been colored. We will look at those cases
and show that all of them lead to a contradiction. So assume that ṽ0 ∈ Sk for some k > 0.

∙ If k = 3, then ṽ1 must lie in S2 since it must be a black neighbour of ṽ0. For similar
reasons ṽ2 ∈ S1 and ṽ3 = v0 must hold. Now ṽ4 has to be a white neighbour of ṽ3
but v0 only has black neighbors, a contradiction.

∙ If k ∈ 3 + 12ℕ we get ṽ1 ∈ Sk−1 and ṽ2 ∈ Sk−2 by the same argument as above.
Now ṽ3 would need to be a white neighbour of ṽ2 but ṽ2 only has black neighbors.
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v0

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 ⋅ ⋅ ⋅

⋅ ⋅ ⋅

Figure 2: Coloring of the spheres in the first part of the proof of Theorem 15 with the
period of the periodic part indicated at the top. Grey spheres are left uncolored for the
second stage of the proof.

∙ If k ∈ 4 + 12ℕ0 then, for similar reasons as in the previous cases, ṽ1 ∈ Sk+1 and
ṽ2 ∈ Sk+2. Again ṽ2 has no white neighbors.

∙ If k ∈ 9 + 12ℕ0 and ṽ1 ∈ Sk−1 we can argue precisely as in the previous cases.
If ṽ1 ∈ Sk+1, then clearly ṽ2 ∈ Sk+2 must hold. Now ṽ2 has only black neighbors
because its unique neighbour in Sk+1 is ṽ1, which has to be colored black.

∙ Finally, if k ∈ 10 + 12ℕ0, then ṽ1 ∈ Sk+1. Furthermore ṽ2 ∈ Sk+2, because the only
neighbour of ṽ1 in Sk is ṽ0, which is colored white. Again all neighbors of ṽ2 are
colored black.

Since there are no more cases left we can conclude that v0 has to be fixed by every
endomorphism which preserves this coloring.

However, we would like that every such endomorphism � preserves all distances from
v0, that is, � maps Sk into itself for each k. So assume that this is not the case and consider
the smallest k such that �(Sk) ⊈ Sk. Then there must be some vertex u0 ∈ Sk such that
�(u0) ∈ Sk−2. This immediately implies that k /∈ {1, 2} and that k /∈ {3, 4, 5, 6, 9, 11} +
12ℕ0, because otherwise a white vertex would be mapped to a black vertex or vice versa.
In order to treat the rest of the cases, consider a ray u0u1u2u3 . . . such that ui ∈ Sk+i and
let ũi = �(ui).

∙ If k ∈ 7 + 12ℕ0, then ũ1 ∈ Sk−1 because Sk−3 is colored white. But then ũ2 has only
black neighbors while ũ3 has to be white.

∙ If k ∈ 8 + 12ℕ0, then ũ0 has only black neighbors, contradicting the fact that ũ1 is
white.

∙ If k ∈ 10 + 12ℕ0, then it is immediate that u0 must be black. Since u1, . . . , u4 are
black as well, a parity argument shows that ũ4 lies either in Sk−2 or in Sk−4.

In the latter case we immediadely get a contradiction because both Sk−3 and Sk−5

are colored black. In the first case clearly ũ5 ∈ Sk−1. If we can show that u0 and ũ5
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have the same predecessor in Sk−5 then we are done, since in this case ũ5 has only
black neighbors.

But this is easy to see. The unique neighbour of u0 in Sk−1 is fixed, so we know that
u0 and ũ0 have a common neighbour. Hence there is a path of length 7 connecting
u0 and ũ5. This path certainly cannot pass through Sk−5 and hence the two vertices
have the same predecessor.

∙ If k ∈ 12 + 12ℕ0, we can again use a parity argument to show that ũ2 lies either in
Sk−2 or in Sk. In the first case – by a similar argument as above – ũ3 ∈ Sk−3 has
only black neighbors, while in the second case ũ2 already has no white neighbour.
Either way we can derive a contradiction.

∙ If k ∈ 13 + 12ℕ0, then either ũ1 ∈ Sk−1 and thus ũ1 has no white neighbors or
ũ1 ∈ Sk−3. In this case by the same argument as before w2 ∈ Sk−4 has no white
neighbors.

∙ If k ∈ 14 + 12ℕ0, then ũ0 ∈ Sk−2 has no white neighbors.

This completes the proof of the fact that all distances from v0 are fixed by any endomor-
phism which preserves such a coloring.

For the second part of the proof consider an enumeration (vi)i⩾0 of all vertices such
that every vi is contained in Sj for some j < 12i + 5. Now color all vertices in S12i+10

whose predecessor is vi black and color all other vertices in this sphere white.
We claim that the so obtained coloring is not fixed by any endomorphism but the

identity. We already know that every color preserving endomorphism � maps every sphere
Sk into itself. Assume that there is a vertex vi which is not fixed by �. Then it is easy to
see that all vertices in S12i+10 whose predecessor is vi will be mapped to vertices whose
predecessor is �(vi). Hence � is not color preserving which completes the second part of
the proof. □

Probably one can extend this result to uncountable trees. One does need a lower
bound on the minimum degree though, see [10].

Furthermore, as we already noted, the fact that D(T ) = 2, together with the observa-
tions that ∣End(T )∣ = c and me(T ) = ℵ0, supports the Endomorphism Motion Conjecture.

Of course, a proof of the Endomorphism Motion Conjecture is still not in sight, not
even for countable structures.

Finally, the computation of De(Qk) seems to be an interesting problem, even for finite
cubes. Similarly, the computation of De(K

k
n), where Kk

n denotes the k-th Cartesian power1

of Kn, looks demanding.

1For the definition of the Cartesian product and Cartesian powers see [8].
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