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Abstract

The distinguishing number D(G) of a graph G is the least cardinal d such that G has
a labeling with d labels which is only preserved by the trivial automorphism. We show
that the distinguishing number of infinite, locally finite, connected graphs G with infinite
motion and growth o(n2/ log2 n) is either 1 or 2, which proves the Infinite Motion Conjec-
ture of Tom Tucker for this type of graphs. The same holds true for graphs with countably
many ends that do not grow too fast. We also show that graphs G of arbitrary cardinality
are 2-distinguishable if every nontrivial automorphism moves at least uncountably many
vertices m(G), where m(G) ≥ |Aut(G)|. This extends a result of Imrich et al. to graphs
with automorphism groups of arbitrary cardinality.
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1 Introduction
Albertson and Collins [1] introduced the distinguishing number D(G) of a graph G as the
least cardinal d such that G has a labeling with d labels which is only preserved by the
trivial automorphism.

This seminal concept spawned many papers on finite and infinite graphs. We are mainly
interested in infinite, locally finite, connected graphs of polynomial growth, see [8], [15],
[13], and in graphs of higher cardinality, see [9], [11]. In particular, there is one conjecture
on which we focus our attention, the Infinite Motion Conjecture of Tom Tucker.

Before stating it, we introduce the notation m(φ) for the number of elements moved by
an automorphism φ, and call m(φ) the motion of φ. In other words, m(φ) is the size of the
set of vertices which are not fixed by φ, that is, the size of its support, supp(φ).

The Infinite Motion Conjecture of Tom Tucker. Let G be an infinite, locally finite,
connected graph. If every nontrivial automorphism of G has infinite motion, then the dis-
tinguishing number D(G) of G is either 1 or 2.

For the origin of the conjecture and partial results compare [13]. The conjecture is true
if Aut(G) is countable, hence we concentrate on graphs with uncountable group.

The validity of the conjecture for graphs with countable group follows from either one
of two different results in [10]. One of them replaces the requirement of infinite motion
by a lower and upper bound on the size of the automorphism group. It asserts that every
infinite, locally finite, connected graphGwhose automorphism group is infinite, but strictly
smaller than 2ℵ0 , has countable group, infinite motion, and distinguishing number 2. For
a precise formulation see Theorem 4.1. The proof is not easy and follows from results of
either Halin [6], Trofimov [14], or Evans [3].

The other one relaxes the condition of local finiteness and requires that the group is at
most countable. It asserts that countably infinite, connected graphs with finite or countably
infinite group and infinite motion are 2-distinguishable, no matter whether they are locally
finite or not, see Theorem 4.2. The proof is short and elementary.

For uncountable connected graphs with countable motion the Infinite Motion Conjec-
ture need not be true. We turn to this case in Section 4, suggest a version of the conjecture
for uncountable connected graphs, and prove its validity under a bound on the size of the
automorphism group.

2 Preliminaries
Throughout this paper the symbol N denotes the set {1, 2, 3, . . .} of positive integers,
whereas the symbol N0 refers to the set {0, 1, 2, 3, . . .} of non-negative integers.

Let G be a graph with vertex set V(G). Let X be a set. An X-labeling l of G is a
mapping l : V(G) → X . For us X will mostly be the set {black,white}. In this case, we
speak of a 2-coloring of G.

Let l be an X-labeling of G. Consider an automorphism φ ∈ Aut(G). If, for every
v ∈ V(G), l(φ(v)) = l(v), we say that l is preserved by φ. If this is not the case, we say
that l breaks φ. An X-labeling l of G is called distinguishing if it is only preserved by the
trivial automorphism. The distinguishing number D(G) of G is the least cardinal d such
that there exists a distinguishing X-labeling of G with |X| = d.

Given a groupA equipped with a homomorphism φ : A→ Aut(G), we say thatA acts
on G. Moreover, we say that A acts nontrivially on G if there is an a ∈ A such that φ(a)
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moves at least one vertex of G. By abuse of language we write a(v) instead of φ(a)(v) and
say that an X-labeling l of G is preserved by a ∈ A if it is preserved by φ(a) ∈ Aut(G).

The ball with center v0 ∈ V(G) and radius r is the set of all vertices v ∈ V(G) with
dG(v0, v) ≤ r and is denoted by BGv0(r), whereas SGv0(r) stands for the set of all vertices
v ∈ V(G) with dG(v0, v) = r. We call it the sphere with center v0 ∈ V(G) and radius r.
If G is clear from the context, we just write Bv0(r) and Sv0(r) respectively. For terms not
defined here we refer to [7].

Although our graphs are infinite, as long as they are locally finite, all balls and spheres
of finite radius are finite. The number of vertices in BGv0(r) is a monotonically increasing
function of r, because

∣∣BGv0(r)∣∣ = r∑
i=0

∣∣SGv0(i)∣∣ and
∣∣SGv0(i)∣∣ ≥ 1 .

Nonetheless, the growth of
∣∣BGv0(r)∣∣ depends very much on G, and it is helpful to define

the growth rate of a graph.
We say that an infinite, locally finite, connected graphG has polynomial growth if there

is a vertex v0 ∈ V(G) and a polynomial p such that

∀ r ∈ N0 :
∣∣BGv0(r)∣∣ ≤ p(r) .

It is easy to see that this implies that all functions
∣∣BGv (r)∣∣ are bounded by polynomials of

the same degree as p, independent of the choice of v ∈ V(G). In this context it should be
clear what we mean by linear and quadratic growth. Observe that the two-sided infinite
path has linear growth, and that the growth of the grid of integers in the plane is quadratic.

We say that G has exponential growth if there is a constant c > 1 such that

∀ r ∈ N0 :
∣∣BGv0(r)∣∣ ≥ cr .

Notice that homogeneous trees of degree d > 2, that is, infinite trees where every vertex
has the same degree d, have exponential growth. For the distinguishability of such trees
and tree-like graphs, see [16] and [9].

We are mainly interested is the distinguishability of infinite, locally finite, connected
graphs of polynomial growth. For us, the following lemma will be helpful.

Lemma 2.1. Let A be a finite group acting on a graph G. If a coloring of G breaks some
element of A, then it breaks at least half of the elements of A.

Proof. The elements of A that preserve a given coloring form a subgroup. If some element
of A is broken, then this subgroup is proper and thus, by Lagrange’s theorem, cannot
contain more than half of the elements of A.

If the action is nontrivial, then we can always find a coloring that breaks at least one
element. Hence, we have the following result.

Lemma 2.2. Let G be a graph. If A is a finite group acting nontrivially on G, then there
exists a 2-coloring of G that breaks at least half of the elements of A.

The proof of Lemma 2.2 is based on the fact that A is a group. But a very similar result
holds for any finite family of nontrivial automorphisms, as the following lemma shows.
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Lemma 2.3. Let G be a finite graph. If A is a finite set equipped with a mapping φ : A→
Aut(G) \ {id}, then there exists a 2-coloring of G that breaks φ(a) for at least half of the
elements of A.

Proof. Let V(G) = {v1, v2, . . . , vn}. For every k ∈ {1, 2, . . . , n}, let Ak be the set of
all a ∈ A with supp(φ(a)) ⊆ {v1, v2, . . . , vk}. We show by induction that the assertion
holds for all Ak and, in particular, for A. Because A1 is the empty set, the assertion is true
for A1. Suppose it is true for Ak−1. Then we can choose a 2-coloring of G that breaks
φ(a) for at least half of the elements of Ak−1. This remains true, even when we change the
color of vk. Notice that, for every a ∈ Ak \Ak−1, φ(a) either maps vk into a white vertex
in {v1, v2, . . . , vk−1} or into a black vertex in {v1, v2, . . . , vk−1}. Depending on which of
the two alternatives occurs more often, we color vk black or white such that this 2-coloring
also breaks φ(a) for at least half of the elements of Ak \Ak−1 and, hence, for at least half
of the elements of Ak.

If every nontrivial automorphism of a graph G has infinite motion, we say that G has
infinite motion. For such graphs the following result from [10] will be of importance.

Lemma 2.4. Let G be an infinite, locally finite, connected graph with infinite motion. If
an automorphism φ ∈ Aut(G) fixes a vertex v0 ∈ V(G) and moves at least one vertex in
Sv0(k), then, for every i ≥ k, it moves at least one vertex in Sv0(i).

3 Graphs of nonlinear growth
In [10], it was shown that infinite, locally finite, connected graphs with infinite motion and
linear growth have countable automorphism group, and therefore distinguishing number
either 1 or 2.

If the growth rate of such graphs becomes nonlinear, then the automorphism group can
become uncountable. This holds, even if the growth rate becomes only slightly nonlinear.

Theorem 3.1. Let ε > 0. Then there exists an infinite, locally finite, connected graph
G with uncountable automorphism group, infinite motion, and nonlinear growth function
g : N0 → N0 such that, for sufficiently large n ∈ N0, g(n) is bounded from above by n1+ε.

Proof. We construct G from T3, that is, the tree in which every vertex has degree 3. First,
choose an arbitrary vertex v0 ∈ V(T3). Our strategy is to replace the edges of T3 by paths
such that, for sufficiently large n ∈ N0, g(n) =

∣∣BGv0(n)∣∣ ≤ n1+ε.
For every i ∈ N0, there are 3 · 2i edges from ST3

v0 (i) to ST3
v0 (i+ 1). If we replace them

by paths of the same length, then the cardinality of the balls BGv0(n) grows linearly with
slope 3 · 2i from ST3

v0 (i) to ST3
v0 (i+ 1).

Observe that, given any affine linear function h : N0 → N0, there is a number nh ∈ N
such that, for all n ≥ nh, h(n) ≤ n1+ε. In particular, we may consider the functions
hi : N0 → N0 defined by hi(x) = 3 · 2i · x+ 1, and choose numbers ni ∈ N such that, for
every n ≥ ni, hi(n) ≤ n1+ε.

As illustrated in Figure 1, for every i ∈ N0, we replace the edges from ST3
v0 (i) to

ST3
v0 (i+ 1) by paths of length ni+1. For every i ∈ N and every vertex v ∈ V(G) on such a

path from ST3
v0 (i) to ST3

v0 (i+ 1), we have dG(v, v0) ≥ ni and, hence,

g(dG(v, v0)) ≤ 3 · 2i · dG(v, v0) + 1 = hi(dG(v, v0)) ≤ dG(v, v0)1+ε .
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v0 (2)ST3
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Figure 1: Replacing the egdes of T3 by paths.

So, for every n ≥ n1, g(n) is bounded from above by n1+ε. Every automorphism of T3
that fixes v0 induces an automorphism of G. It is easy to see that this correspondence is
bijective. Thus, Aut(G) is uncountable. Furthermore, G inherits infinite motion from T3.
Since Aut(G) is uncountable, the result of [10] mentioned at the beginning of Section 3
implies that G cannot have linear growth.

Though we cannot assume that the automorphism groups of our graphs are countable,
we prove that infinite, locally finite, connected graphs with infinite motion and nonlinear,
but moderate, growth are still 2-distinguishable, that is, they have distinguishing number
either 1 or 2.

Our construction of a suitable coloring consists of several steps. In Lemma 3.2 we color
a part of the vertices in order to break all automorphisms that move a distinguished vertex
v0. In Lemma 3.3 we show how to color some of the remaining vertices in order to break
more automorphisms. Iteration of this procedure yields a distinguishing coloring, as shown
in Theorem 3.4.

Lemma 3.2. Let G be an infinite, locally finite, connected graph with infinite motion and
v0 ∈ V(G). Then, for every k ∈ N, one can 2-color all vertices in Bv0(k + 3) and
Sv0(λk + 4), λ ∈ N, such that, no matter how one colors the remaining vertices, all
automorphisms that move v0 are broken.

Proof. If k = 1, then we color v0 black and all v ∈ V(G) \ {v0} white, whence all
automorphisms that move v0 are broken. So, let k ≥ 2. First, we color all vertices in
Sv0(0), Sv0(1), and Sv0(k + 2) black and the remaining vertices in Bv0(k + 3) white.
Moreover, we color all vertices in Sv0(λk+4), λ ∈ N, black and claim that, no matter how
we color the remaining vertices, v0 is the only black vertex that has only black neighbors
and only white vertices at distance r ∈ {2, 3, . . . , k + 1}, see Figure 2.

It clearly follows from this claim that this coloring breaks every automorphism that
moves v0. It only remains to verify the claim.

Consider a vertex v ∈ V(G) \ {v0}. If v is not in Sv0(1), then it is easy to see that v
cannot have the aforementioned properties. So, let v be in Sv0(1) and assume it has only
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v0

Sv0(0) Sv0(k + 2) Sv0(2k + 4)

Sv0(1) Sv0(k + 4)

Figure 2: Breaking all automorphisms that move v0.

black neighbors and only white vertices at distance 2. Then it cannot be neighbor to any
vertex in Sv0(2), but must be neighbor to all vertices inBv0(1) except itself. Therefore, the
transposition of the vertices v and v0 is a nontrivial automorphism of G with finite support.
Since G has infinite motion, this is not possible.

Lemma 3.3. Let G be an infinite, locally finite, connected graph with infinite motion and
v0 ∈ V(G). Moreover, let ε > 0. Then there exists a k ∈ N such that, for every m ∈ N
and for every n ∈ N that is sufficiently large and fulfills

|Sv0(n)| ≤
n

(1 + ε) log2 n
, (3.1)

one can 2-color all vertices in Sv0(m + 1), Sv0(m + 2), . . . , Sv0(n), but not those in
Sv0(λk + 4), λ ∈ N, such that all automorphisms that fix v0 and act nontrivially on
Bv0(m) are broken.

The coloring and the meaning of the variables m, n, and k is illustrated by Figure 3.

Proof. First, choose a k ∈ N that is larger than 1 + 1
ε . Then

k − 1

k
>

1

1 + ε
. (3.2)

Let m ∈ N. By (3.2), there is an n0 ∈ N such that

∀n ≥ n0 : (n−m) · k − 1

k
≥ n · 1

1 + ε
+ 1 . (3.3)

Let n ∈ N be sufficiently large, that is, n ≥ n0, and assume it fulfills (3.1). Then, the
number of spheres Sv0(m+1), Sv0(m+2), . . . , Sv0(n) that are not of the type Sv0(λk+4),
λ ∈ N, is at least ⌊

(n−m) · k − 1

k

⌋
≥
⌊
n · 1

1 + ε
+ 1

⌋
>

n

1 + ε
· (3.4)
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v0

Sv0(m) Sv0(n)

k

Figure 3: Breaking all automorphisms that fix v0 and act nontrivially on Bv0(m).

Our goal is to 2-color the vertices in these spheres in order to break all automorphisms
that fix v0 and act nontrivially on Bv0(m).

Let Aut(G, v0) be the group of all automorphisms that fix v0. Every φ ∈ Aut(G, v0)
induces a permutation φ|Bv0(n) of the vertices in Bv0(n). These permutations form a
group A. If σ and τ are different elements of A, then στ−1 ∈ A acts nontrivially on
Bv0(n). By Lemma 2.4, it also does so on Sv0(n), which means that σ and τ do not agree
on Sv0(n). Therefore, the cardinality of A is at most |Sv0(n)|!, for which the following
rough estimate suffices for our purposes:

|Sv0(n)|! ≤ |Sv0(n)||
Sv0

(n)|−1 ≤
(

n
(1+ε) log2 n

) n
(1+ε) log2 n

−1

≤ n
n

(1+ε) log2 n
−1

= 2

(
n

(1+ε) log2 n
−1

)
log2 n ≤ 2

n
1+ε−1 .

(3.5)

It is clear that, if an element σ ∈ A that acts nontrivially on Bv0(m) is broken by a suitable
2-coloring of some spheres in Bv0(n), then all φ ∈ Aut(G, v0) with φ|Bv0(n) = σ are
broken at once. So it suffices to break all σ ∈ A that act nontrivially on Bv0(m) by a
suitable 2-coloring of some spheres in Bv0(n) in order to ensure that all φ ∈ Aut(G, v0)
that act nontrivially on Bv0(m) are broken.

Before doing this, let us remark that any element σ ∈ A that acts nontrivially on the
ball Bv0(m), also acts nontrivially on every sphere Sv0(m + 1), . . . , Sv0(n). This is a
consequence of Lemma 2.4, and implies that we can break σ by breaking the action of σ
on any one of the spheres Sv0(m+ 1), . . . , Sv0(n).

Now, consider the subset S ⊆ A of all elements that act nontrivially on Bv0(m). As
already remarked, every σ ∈ S acts nontrivially on every sphere Sv0(m+ 1), . . . , Sv0(n).
Hence, we can apply Lemma 2.3 to break at least half of the elements of S by a suitable
coloring of Sv0(m+ 1). What remains unbroken is a subset S′ ⊆ S of cardinality at most
|S|/2. Now, we proceed to the next sphere. We can break at least half of the elements of
S′ by a suitable coloring of Sv0(m+ 2). What still remains unbroken, is a subset S′′ ⊆ S
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of cardinality at most |S|/4.
Iterating the procedure, but avoiding spheres of the type Sv0(λk + 4), λ ∈ N, we end

up with the empty subset ∅ ⊆ S after at most log2 |S|+1 ≤ log2 |A|+1 ≤ n
1+ε steps, see

(3.5). This is less than the number of spheres not of the type Sv0(λk+ 4), λ ∈ N, between
Sv0(m + 1) and Sv0(n), see (3.4). Thus, we remain within the ball Bv0(n). Hence, all
s ∈ S and, therefore, all φ ∈ Aut(G, v0) that act nontrivially on Bv0(m) are broken, and
we are done.

Theorem 3.4. Let G be an infinite, locally finite, connected graph with infinite motion and
v0 ∈ V(G). Moreover, let ε > 0. If there exist infinitely many n ∈ N such that

|Sv0(n)| ≤
n

(1 + ε) log2 n
, (3.6)

then the distinguishing number D(G) of G is either 1 or 2.

Proof. Consider the k ∈ N provided by Lemma 3.3. First, we use Lemma 3.2 to 2-color
all vertices in Bv0(k + 3) and in Sv0(λk + 4), λ ∈ N, such that, no matter how we color
the remaining vertices, all automorphisms that move v0 are broken.

Let m1 = k + 3. Among all n ∈ N that satisfy (3.6) we choose a number n1 ∈ N
that is larger than m1 and sufficiently large to apply Lemma 3.3. Hence, we can 2-color all
vertices in Sv0(m1 + 1), Sv0(m1 + 2), . . . , Sv0(n1), except those in Sv0(λk + 4), λ ∈ N,
such that all automorphisms that fix v0 and act nontrivially on Bv0(m1) are broken. Next,
let m2 = n1 and choose an n2 ∈ N to apply Lemma 3.3 again. Iteration of this procedure
yields a 2-coloring of G.

If an automorphism φ ∈ Aut(G) \ {id} moves v0, then it is broken by our coloring.
If it fixes v0, consider a vertex v with φ(v) 6= v. Since G is connected and m1 < m2 <
m3 < . . ., there is an i ∈ N such that v is contained in Bv0(mi). Hence, φ acts nontrivially
on Bv0(mi) and is again broken by our coloring.

Corollary 3.5. LetG be an infinite, locally finite, connected graph with infinite motion and
v0 ∈ V(G). Moreover, let ε > 0. If there exist infinitely many n ∈ N such that

|Bv0(n)| ≤
n2

(2 + ε) log2 n
, (3.7)

then the distinguishing number D(G) ofG is either 1 or 2. In particular, the Infinite Motion
Conjecture holds for all graphs of growth o(n2/ log2 n).

Proof. Let n1 < n2 < n3 < . . . be an infinite sequence of numbers that fulfill (3.7).
Notice that, for every k ∈ N,

nk∑
i=1

i

(1 + ε
2 ) log2 i

>
nk

2

(2 + ε) log2 nk
≥ |Bv0(nk)| >

nk∑
i=1

|Sv0(i)| . (3.8)

Since

lim
k→∞

((
nk∑
i=1

i

(1 + ε
2 ) log2 i

)
− nk

2

(2 + ε) log2 nk

)
=∞ , (3.9)
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we infer that

lim
k→∞

nk∑
i=1

(
i

(1 + ε
2 ) log2 i

− |Sv0(i)|
)

=∞ , (3.10)

and that, for infinitely many i ∈ N,

|Sv0(i)| <
i

(1 + ε
2 ) log2 i

. (3.11)

Hence, we can apply Theorem 3.4 to show that the distinguishing number D(G) of G is
either 1 or 2.

A result similar to Theorem 3.4 can also be obtained for graphs with countably many
ends1, none of which grows too fast. Readers not familiar with the notion of ends may
safely skip the rest of this section, as the result is not used elsewhere in the paper.

Theorem 3.6. Let G be an infinite, locally finite, connected graph with countably many
ends and infinite motion. Moreover, let v0 ∈ V(G) and ε > 0. For an end ω ofG let Sωv0(n)
be the set of vertices in Sv0(n) that lie in the same connected component of G\Bv0(n−1)
as ω. If, for every end ω, there are infinitely many n ∈ N such that∣∣Sωv0(n)∣∣ ≤ n

(1 + ε) log2 n
, (3.12)

then the distinguishing number D(G) of G is either 1 or 2.

Proof. Basically the proof consists of three steps. First we color part of the vertex set in
order to break all automorphisms that move v0. In the second step we break all automor-
phisms in Aut(G, v0) that do not fix all ends of the graph by coloring some other vertices.
Finally, we color the remaining vertices to break the rest of the automorphisms.

In order to break all automorphisms that move v0 we apply Lemma 3.2, just as in the
proof of Theorem 3.4. The only difference is that we choose k twice as large as proposed
by Lemma 3.3, because we would like to color some additional spheres in the second step
of the proof before applying an argument similar to that in Lemma 3.3.

For the second step consider the spheres Sv0(
2λ+1

2 k + 4), λ ∈ N. We wish to color
those spheres such that every automorphism that fixes v0 and preserves the coloring also
fixes every end of G.

It is not hard to see that the sets Sωv0(
2λ+1

2 k+4), ω an end ofG, λ ∈ N, carry the follow-
ing tree structure. Consider v0, the root, which is connected by an edge to Sωv0(

3
2k+ 4) for

each end ω. For every end ω of G and every λ ∈ N, draw an edge from Sωv0(
2λ+1

2 k+4) to
Sωv0(

2λ+3
2 k+4). To see that this is indeed a tree just notice that if Sω1

v0 (n) = Sω2
v0 (n), then,

for every m ≤ n, Sω1
v0 (m) = Sω2

v0 (m). So there cannot be any circles. By construction,
this tree structure is infinite, locally finite, and does not have any endpoints.

Next, notice that every automorphism φ ∈ Aut(G, v0) that does not fix all ends also
acts as an automorphism on this tree structure. By [16], the distinguishing number of
infinite, locally finite trees without endpoints is at most 2. Therefore it is possible to 2-
color the sets Sωv0(

2λ+1
2 k + 4), ω an end of G, λ ∈ N, such that every such automorphism

1Ends were first introduced by Freudenthal [4] in a topological setting, but here the definition of Halin [5] is
more appropriate. For an accessible introduction to ends of infinite graphs see [2].
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is broken. It is also worth noting that so far we did not use the countability of the end space
of G, nor did we use the growth condition on the ends.

Let us turn to the third step of the proof. So far we have colored the ballBv0(k+3) and
the spheres Sv0(

λ
2 k + 4), λ ≥ 2, in a way that color preserving automorphisms fix v0 and

move every Sωv0(n) into itself. Consider such an automorphism φ, which acts nontrivially
on G. If we remove the fixed points of φ from G, then the infinite motion of G implies that
the resulting graph has only infinite components. Hence, there is a ray in G which contains
no fixed point of φ. The image of this ray must lie in the same end ω. Thus, there is an
index n0, such that, for every n ≥ n0, φ acts nontrivially on Sωv0(n).

Let (ωi)i∈N be an enumeration of the ends of G. Choose a function f : N → N such
that, for every i ∈ N, f−1(i) is infinite. Assume that all spheres up to Sv0(m) have been
colored in the first i− 1 steps. In the i-th step we would like to color some more spheres in
order to continue breaking all automorphisms in Aut(G, v0) that act nontrivially on each
of the spheres S

ωf(i)
v0 (n), n ≥ m. This can be done by exactly the same argument as the

one used in the proof of Lemma 3.3.
As we already mentioned, every automorphism that was not broken in the first two steps

acts by nontrivially on the rays of some end. Since, in the procedure described above, every
end is considered infinitely often, it is clear that every such automorphism will eventually
be broken. This completes the proof.

4 Graphs with higher cardinality
If a graph G has trivial automorphism group, then G is obviously 1-distinguishable, that
is, D(G) = 1. From now on we assume that our graphs G have nontrivial automorphism
group. In this case, the motion m(G) of G is defined as

m(G) = min
φ∈Aut(G)\{id}

m(φ) . (4.1)

As already mentioned, the Infinite Motion Conjecture does not hold for graphs of higher
cardinality. An example is the Cartesian product G = Kn �Km of two complete graphs
on infinitely many vertices n and m with 2n < m. By [9], G has motion n, but D(G) > n.

The question arises whether one can adapt the Infinite Motion Conjecture to graphs of
higher cardinality. The starting point is [12, Theorem 1]. It asserts that a finite graph G is
2-distinguishable if m(G) > 2 log2 |Aut(G)|. However, a second look at the proof shows
that the inequality sign can be replaced by ≥. For details see Section 5. For finite graphs
we thus infer that

m(G) ≥ 2 log2 |Aut(G)| implies D(G) = 2, (4.2)

which can also be written in the form

|Aut(G)| ≤ 2
m(G)

2 implies D(G) = 2 .

Notice that 2
m(G)

2 = 2m(G) if m(G) is infinite. We are thus tempted to conjecture for
graphs G with infinite motion that |Aut(G)| ≤ 2m(G) implies D(G) = 2. We formulate
this conjecture as the

Motion Conjecture. Let G be a connected graph with infinite motion m(G) and
|Aut(G)| ≤ 2m(G) . Then D(G) = 2.
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How does this compare with the Infinite Motion Conjecture? It asserts that the distin-
guishing number of a locally finite, connected graphG is 2 if m(G) is infinite. Since locally
finite graphs are countable, the condition that m(G) is infinite is equivalent to m(G) = ℵ0.
Furthermore, for countable graphs we have

|Aut(G)| ≤ ℵℵ00 = 2ℵ0 .

Hence, for countable graphs, and thus also for locally finite, connected graphs with infinite
motion, the inequality of the Motion Conjecture is automatically satisfied, which means
that the Infinite Motion Conjecture is a special case of the Motion Conjecture.

Now, let us focus on the two results from [10] that imply the validity of the Infinite
Motion Conjecture for graphs with countable group.

Theorem 4.1. Let G be a locally finite, connected graph that satisfies ℵ0 ≤ |Aut(G)| <
2ℵ0 . Then |Aut(G)| = ℵ0, m(G) = ℵ0, and D(G) = 2.

Notice that the only thing that is required here, besides local finiteness and connected-
ness, is an upper and a lower bound on the size of Aut(G). And it turns out, that Aut(G)
is countable, even without the continuum hypothesis. Even infinite motion and D(G) = 2
are consequences of this restriction on the size of the automorphism group.

Theorem 4.2. Let G be a countably infinite, connected graph that satisfies the conditions
|Aut(G)| ≤ m(G) and m(G) = ℵ0. Then D(G) = 2.

Here, without local finiteness, one cannot drop the assumption of infinite motion. If
we assume that Aut(G) has smaller cardinality than the continuum, then we can ensure
2-distinguishability if the continuum hypothesis holds, but we do not know whether this is
really necessary.

Corollary 4.3. Let G be a countably infinite, connected graph with infinite motion. If the
continuum hypothesis holds, and if |Aut(G)| < 2m(G), then D(G) = 2.

The next theorem shows that Theorem 4.2 also holds for graphs of higher cardinality
and uncountable motion.

Theorem 4.4. Let G be a connected graph with uncountable motion. Then |Aut(G)| ≤
m(G) implies D(G) = 2.

Proof. Set n = |Aut(G)|, and let ζ be the smallest ordinal number whose underlying set
has cardinality n. Furthermore, choose a well ordering ≺ of A = Aut(G) \ {id} of order
type ζ, and let α0 be the smallest element with respect to ≺. Then the cardinality of the set
of all elements of A between α0 and any other α ∈ A is smaller than n ≤ m(G).

Now we color all vertices ofG white and use transfinite induction to break all automor-
phisms by coloring selected vertices black.

INDUCTION BASE By the assumptions of the theorem, there exists a vertex v0 that is
not fixed by α0. We color it black. This coloring breaks α0.

INDUCTION STEP Let β ∈ A. Suppose we have already broken all α ≺ β by pairs of
distinct vertices (vα, α(vα)), where vα is black and α(vα) white. Clearly, the cardinality
of the set R of all (vα, α(vα)), α ≺ β, is less than m(G) ≥ n. By assumption, β moves at
least m(G) vertices. Since there are still n vertices not in R, there must be a pair of vertices
(vβ , β(vβ)) that does not meet R. We color vβ black. This coloring breaks β.
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Corollary 4.5. Let G be a connected graph with uncountable motion. If the general con-
tinuum hypothesis holds, and if |Aut(G)| < 2m(G), then D(G) = 2.

Proof. Under the assumption of the general continuum hypothesis 2m(G) is the successor of
m(G). Hence |Aut(G)| ≤ m(G), and the assertion of the corollary follows from Theorem
4.4.

5 The Motion Lemma of Russell and Sundaram
In order to show that a finite graph G is 2-distinguishable if m(G) > 2 log2 |Aut(G)|,
Russell and Sundaram [12] first defined the cycle norm of an automorphism φ. If

φ = (v11v12 . . . v1l1)(v21 . . . v2l2) . . . (vk1 . . . vklk) ,

then the cycle norm c(φ) of φ is

c(φ) =

k∑
i=1

(li − 1) .

The cycle norm c(φ) is related to graph distinguishability as follows: Let G be randomly
2-colored by independently assigning each vertex a color uniformly from {black,white}.
Then the probability that every cycle of φ is monochromatic is 2− c(φ). In this case, φ
preserves the coloring so chosen.

Further, they define the cycle norm c(G) of a graph G as

c(G) = min
φ∈Aut(G)\{id}

c(φ) .

We now reprove Theorem 2 of [12] with ≥ instead of >. Because c(φ) ≥ m(φ)/2 and
thus c(G) ≥ m(G)/2 we infer from Theorem 5.1 below that G is 2-distinguishable if
m(G) ≥ 2 log2 |Aut(G)|. We propose to call this result “Motion Lemma of Russell and
Sundaram”. Actually, the only difference from the original proof is the insertion of the
middle term in (5.2).

Theorem 5.1. Let G be a finite graph, and c(G) log d ≥ log |Aut(G)|. Then G is d-
distinguishable, that is, D(G) ≤ d.

Proof. Let χ be a random d-coloring of G, the probability distribution being given by
selecting the color of each vertex independently and uniformly in the set {1, . . . , d}. For a
fixed automorphism φ ∈ Aut(G) \ {id} consider the probability that the random coloring
χ is preserved by φ:

Prχ[∀ v : χ(φ(v)) = χ(v)] =

(
1

d

)c(φ)

≤
(
1

d

)c(G)

. (5.1)

Collecting these events yields the inequality

Prχ[∃φ ∈ Aut(G) \ {id} ∀ v : χ(φ(v)) = χ(v)] ≤ (|Aut(G)| − 1)
(
1
d

)c(G)

< |Aut(G)|
(
1
d

)c(G)
.

(5.2)

By hypothesis the last term is at most 1. Thus there exists a coloring χ such that, for every
φ ∈ Aut(G) \ {id}, there is a v for which χ(φ(v)) 6= χ(v), as desired.
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