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Abstract

If a graph G has distinguishing number 2, then there exists a partition
of its vertex set into two parts, such that no nontrivial automorphism of
G fixes setwise the two parts. Such a partition is called a 2-distinguishing
coloring of G, and the parts are called its color classes. If G admits
such a coloring, it is often possible to find another in which one of the
color classes is sparse in a certain sense. In this case we say that G has
2-distinguishing density zero. An extreme example of this would be an
infinite graph admitting a 2-distinguishing coloring in which one of the
color classes is finite.

If a graph G contains a vertex v such that, for all n € N, any two
distinct vertices equidistant from v have nonequal n-spheres, then we say
that G satisfies the Distinct Spheres Condition. In this paper we prove a
general result: any countable connected graph that satisfies the Distinct
Spheres Condition is 2-distinguishable with density zero. We present two
proofs of this, one that uses a deterministic coloring, and another (that
applies only to locally finite graphs) using a random coloring. From this
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result, we deduce that several important families of countably infinite
and connected graphs are 2-distinguishable with density zero, including
those that are locally finite and primitive. Furthermore, we prove that
any connected graph with infinite motion and subquadratic growth is 2-
distinguishable with density zero.

1 Introduction

Let G be a graph without loops or multiple edges. If G admits an n-coloring of
its vertices that is only preserved by the identity automorphism, then G is called
n-distinguishable and the n-coloring is called an n-distinguishing coloring.

A large number of papers have been written about the distinguishability of
finite and infinite graphs. Arguably, in this context the most important class
of graphs are those that are 2-distinguishable. Such graphs have automorphism
groups that are minimal with respect to the relation of strong orbit equivalence
(see [1] or [6] for example), and there are important permutational properties
which, when exhibited by Aut(G), guarantee that G is 2-distinguishable. For
example, it is known that every finite vertex-primitive graph with at least 33
vertices, other than the complete graph or its complement, is 2-distinguishable
(see [9, Theorem 1]), and the only known proof of this depends on the Clas-
sification of the Finite Simple Groups. A similar result holds for (countably)
infinite vertex-primitive graphs with infinite diameter (see [10, Theorem 1J]).
There is a well-known open conjecture about 2-distinguishability, called The
Infinite Motion Conjecture. A graph G is said to have infinite motion if every
nontrivial automorphism of G moves infinitely many vertices, and the conjec-
ture states that every connected, locally finite graph with infinite motion is
2-distinguishable.

In this paper we focus on this important class of 2-distinguishable graphs,
and consider those that are countably infinite and connected. For such a graph
G one can partition the vertex set V= BUR (into “blue” and “red” color
classes of vertices) such that the identity is the only automorphism of G that
fixes setwise B and R. We always assume, without loss of generality, that
B < [R].

It is possible that |B| is finite, even when G is infinite. In this case the
minimum cardinality of B among all such partitions is called the 2-distinguishing
cost of G, and it is known, for example, that a connected, locally finite graph G
whose automorphism group is infinite has finite 2-distinguishing cost if and only
if Aut(G) is countable (see [2, Theorem 3.3]). In this paper we do not consider
this situation, and instead investigate the more common scenario in which |B|
is infinite for every 2-distinguishing coloring of G. We prove that it is possible
to find a 2-distinguishing coloring of G in which the blue vertices are sparse in a
certain sense (see Section 2 for a precise definition) in the following situations:

(i) if G is locally finite and primitive (see Corollary 4);

(ii) G is a tree without leaves (see Corollary 4);



(iii) G is vertex-transitive of connectivity 1 (see Corollary 4);

(iv) G isthe Cartesian product of any two connected graphs of infinite diameter
(see Corollary 4);

(v) G has infinite motion and subquadratic growth (see Theorem 8); and
(vi) G satisfies the Distinct Spheres Condition (see Theorem 3).

Our proof of (v) simplifies the proof of the main result of [4], that locally finite
graphs with infinite motion and subquadratic growth are 2-distinguishable.

2 Preliminaries

Throughout this paper, G will be a simple graph without loops or multiple
edges, with vertex set V and edge set E. An X-coloring (sometimes called
an X-labeling) | of G is a mapping [ : V — X. If X has cardinality n, we
say that [ is an n-coloring. In this paper, [ will typically be a 2-coloring, with
X = {blue, red}.

Let | be an X-labeling of G and g € Aut(G). If, for every v € V, we have
that I(g(v)) = l(v), then we say that [ is preserved by g. If [ is not preserved
by g, then we say that g breaks [. The coloring [ is called distinguishing if it is
only preserved by the trivial automorphism. Accordingly, an n-distinguishing
coloring of G is a distinguishing coloring that is also an n-coloring. The distin-
guishing number D(G) of G is then the least cardinal d such that there exists a
d-distinguishing coloring of G.

The ball with center v € V' and radius r in G is the set of all vertices x € V
with d(v,2) < r and is denoted by B,(r). The sphere with center v € V and
radius 7 is the set of all vertices x € V with d(v, z) = r and is denoted by S, (r).
For terms not defined here we refer the reader to [5].

The graphs considered in this paper are infinite. If a graph G is locally finite,
then all balls and spheres of finite radius are finite. Moreover, if the diameter
of G is infinite then, for all r € N,

|Buo(r)l =) _ISu(i)] and  [Su(d)] > 1.
=0

For functions F : N —» N and f : N — N, we write F(r) ~ O(f(r)) if there
exists a constant ¢ such that F(r) < ¢f(r) for all r € N.

The graphs in this paper will be 2-distinguishable. Let G be a countable
connected graph that admits a 2-distinguishing coloring [. For any set W of
vertices in GG, and any vertex v of G, we define the density of W at v to be

. [By(n) N W]

V)= o B, )



if this limit exists, with the convention that a finite cardinal divided by an
infinite cardinal is zero, and a quotient of two infinite cardinals is undefined. If
0, (W) exists for all vertices v € V', then we define the density of W to be

O(W) :=sup{d,(W) : v € V}}.

If B and R are the two color classes of | and 6(B) or §(R) exist, then the
density of 1 at v is 0,(1) := min{d,(B), §,(R)}, and the density of I is

8(1) := min{d(B), 5(R)}.

If [ is a 2-distinguishing coloring of G and d,(l) = 0 for some vertex v, then
we say that G has 2-distinguishing density zero at v. If §(I) = 0 then we say
that G has 2-distinguishing density zero.

Lemma 1. Let G be a connected graph and let v,w be vertices in G. Suppose
there is a constant ¢ such that for all n € N we have |By,(n+ 1) < ¢ |By(n)].
If G has 2-distinguishing density zero at v, then G has 2-distinguishing density
zero.

Proof. Suppose [ is a 2-distinguishing coloring of G with density zero at v, for
some vertex v € V. Let B be a color class of | such that 6,(B) = 0. For
all vertices z,y € V and all n > d(z,y), we have By(n — d(z,y)) C Bz(n) C
By(n+ d(z,y)). Hence, for all suitably large n,

M0 By (n)] < |By(n)| < [Bu(n)] - 10, (1)

Fix any vertex z € V. Now, | B,(n)| > ¢~ 42| B,,(n)| by (1), and | B,,(n)| >
¢ 4)| By (n 4 d(v,z))| by assumption. Moreover, by (1), |By(n + d(v,z))| >
c~Uw)|B,(n + d(v,z))|. Hence, writing k := ¢~ wz)=dv.2)=d(ww) and ¢ .=
d(v,x), we have

|Bz(n)| > k|By(n+d)| and |By(n)NB| < |By(n+d)NB.

Therefore
| Bz (n) N B| < 1 |By(n+d) N B|
|B:(n)|  ~ k |By(n + d)|
Since the coloring [ has zero density at v, it follows that the coloring must also
have zero density at x. O

The following is an example of a connected graph that does not have 2-
distinguishing density zero, but nevertheless has 2-distinguishing density zero
at some vertex v.

Example 2. Let G be a graph constructed as follows. Start with two families
of disjoint paths, P, and P, where P; and P| are trivial one-vertex paths and
|P,| = |P.| = nzzzll |P;| for all n > 1. For every n > 1 add edges between
all vertices of P, and one endpoint of P,,_; and between all vertices of P), and
one endpoint of P/ ;. Add another edge between the unique vertex v of P; and



the unique vertex v’ of P/. Finally, for every n > 1 and every vertex z € P,
we introduce two new vertices v{ and v§ and connect them to both x and the
unique neighbor of z in P/ _;.

Every automorphism of G must pointwise fix the set (UieN H) U (UieN Pz’)
Furthermore, for any = € | J,cy P/ there is an automorphism o, of G' that inter-
changes v{ and v3 while fixing all other vertices of G. From these observations
we can draw two conclusions. The first is that for any 2-distinguishing col-
oring !’, each pair {v{,v3} must be assigned different colors. The second is
that the following coloring [ is 2-distinguishing: B = {v{ : © € U,y P} and
R=V(G)\B.

We claim that the coloring [ has density zero at the unique vertex v of P;.
Indeed, the only blue vertices in B, (n) are vertices vf for = € U?;ll P/, but
By, (n) also contains the red vertices of P,,. Hence,

|Bo(m) N B| _ S P L

Bo(n)l = Pl

showing that the coloring has density zero at v.

On the other hand we claim that any 2-distinguishing coloring I’ does not
have density zero at the unique vertex v’ of PJ. Indeed, let B’ and R’ be the two
color classes of I’ and note that the ball B,/ (n) consists of U?;ll P, U, P,
and the vertices v{ and v§ for z € |J;_, P/. Hence

n—1
4
Bl =4 Il +3ipd = (34 2) )

i=1

As observed previously, for every x € P the vertices v] and v§ must lie in
distinct color classes of I, because I’ is distinguishing. Hence |B,(n)NB| > |B,|.
It follows immediately that I’ does not have density zero at v’.

3 Zero density for graphs satisfying the Distinct
Spheres Condition

A graph G is said to satisfy the Distinct Spheres Condition, or DSC, if there
exists a vertex v € V such that, for all distinct u,w € V,

d(v,u) = d(v,w) implies S, (n) # Sy (n) for infinitely many n € N.

Notice that graphs that satisfy the DSC have infinite diameter, even when they
are not locally finite. Any countable, connected graph satisfying the Distinct
Spheres Condition is known to be 2-distinguishable by The Distinct Spheres
Lemma in [6].

Let DSC(u,w) = J,en (Su(n)ASy,(n)), where A denotes the symmetric
difference. If G satisfies the DSC then for any two vertices u,w equidistant
from v there are infinitely many n € N for which S, (n)AS,(n) is nonempty.



Hence DSC(u,w) is infinite and contains vertices of arbitrary distance from v.
Note that an automorphism in G that fixes a vertex € DSC(u, w) cannot move
u to w or vice versa.

Theorem 3. If G is a countable connected graph that satisfies the Distinct
Spheres Condition, then G is 2-distinguishable with density zero.

Proof. Suppose G satisfies the DSC with respect to the vertex v. We consider
all pairs of vertices {u,w} that have equal distance from v. As the number of
such pairs is countable, we enumerate them in some order, say {p1,p2,...}.

We will denote the set of blue vertices in our coloring by B, where B consists
of v, two adjacent vertices a,b of distance 2 and 3 from v, and isolated vertices
x1 € DSC(p1),x2 € DSC(p2),... such that for all distinct ¢,j € N we have:
(i) d(v,x;) > 7i%; (ii) @; and x; are not equidistant from v; and (iii) z; and z;
are not adjacent. All vertices not in B are colored red.

Any color preserving automorphism g € Aut(G) has to stabilize the edge ab
and thus fixes v since it is the only vertex of distance 2 from ab. Hence each
x; € B is also fixed by g, because it is the only blue vertex in its v-sphere.

Suppose a vertex u is not fixed by g and write w := gu. Then {u, w} is a pair
of vertices equidistant from v and thus {u,w} = p; for some ¢ € N. However,
x; € DSC(u,w) is fixed by g. This is a contradiction. Hence g is the identity
and the coloring is distinguishing.

For any vertex u and any n € N we have that B, (n) C B,(n + d(u,v)), and

hence | By (n) N B| < |By(n + d(u,v)) N B| < 3+ /24w 0(/n). Since
|B,(n)| > n, we have that G has 2-distinguishing density zero. O

Corollary 4. The following graphs are 2-distinguishable with density zero:
(i) connected, locally finite, primitive graphs;
(i) denumerable trees without leaves;

(#ii) denumerable vertez-transitive graphs of connectivity 1; and

(iv) the Cartesian product of any two connected denumerable graphs of infinite
diameter.

Proof. By [10, Theorem 3, Theorem 4, Lemma 8 & Corollary 10], the graphs in
Corollary 4 all satisfy the Distinct Spheres Condition. O

We conclude this section with a probabilistic proof of Theorem 3 in the case
where G is locally finite. The random zero-density coloring described in the
proof is interesting because it is in some sense canonical, and can be applied to
any graph. While this will not necessarily yield a distinguishing coloring, results
from [8] suggest that choosing colors at random is often a good way to obtain a
distinguishing coloring.

Define a random coloring [ as follows. Fix a root vy and color every vertex
at distance n from the root independently from all other vertices blue with



probability p,, and red with probability 1—p,. Assume that lim, .., p, = 0 and
that p,, is monotonically decreasing. Furthermore assume that ) _pn = 0.
The first assumption makes sure that the colouring has density 0, whereas the
latter assumption will be used to show that the colouring is distinguishing with
positive probability. Indeed, it follows from the law of large numbers that the
above coloring almost surely has density 0.

To show that the probability of obtaining a distinguishing coloring is positive,
we first introduce an equivalence relation that is almost surely preserved by every
color preserving automorphism. Let the relation ~ on V be defined by u ~ w
if there is some n € N such that B,(n) = B, (n). It is not hard to see that this
is an equivalence relation. Note that if u ~ w then S,(n) # S,(n) for every
n € N.

Lemma 5. If G is a connected, locally finite graph then, almost surely, every
automorphism which preserves the random coloring | described above, setwise
fizes all equivalence classes w.r.t. the relation ~.

Proof. Take an automorphism g € Aut(G) which does not setwise fix all equiv-
alence classes. Then there must be vertices u,v such that u ¢ v and gu = v.
Hence every such automorphism is contained in a set of the form

MNpvw = {9 € AWt G | gu = v, w = gv}

for some triple u, v, w such that u ~ v.
We claim that we need only show that the following holds for all triples
u, v, w with u ¢ v:
Pr[3g € Aypw :log=1]=0.

Indeed, in this case by o-subadditivity of the probability measure we have that
the probability that there exists a color preserving g € Aut(G) that does not
setwise fix the equivalence classes is bounded above by

Z Pr[3g € Aypw : Log=1]=0.
UV, W
unbv

Fix vertices u,v,w such that u ¢¢ v. It remains for us to show that the
probability of finding a color preserving automorphism in Ay, is 0. If Ay
is empty, then this holds vacuously, so we may assume that A, is nonempty.
Observe that every automorphism in Ay, must move X,, := S,(n) \ Sy(n) to
the set Yy, := S, (n) \ Sw(n). Clearly X,, and Y;, are disjoint and have the same
cardinality. The sets are nonempty because Sy (n) and S,(n) are distinct and
have the same finite cardinality.

In order to have a color preserving automorphism in A, it is necessary
that X,, and Y,, receive the same number of blue vertices for every n. For each
n € N choose z,, € X,, and let k(n) be the distance from z,, to the root vertex
vo. Then n —d(u,vo) < k(n) < n +d(u,vp) and hence lim, o0 Pr(ny = 0.

Let ng be such that py,) < % for every n > ng. To simplify our notation,
let R and B be respectively the set of red vertices, and the set of blue vertices,



and denote by b(S,T) the event that |[SNB| = |T N B|. For n > ny write
X} =X, \ {zn}. Then we have,

Pr[b(X,, Yo)] < Prl(zn € R) AB(XE, V)] + Prl(zn € B) A —b(X2,Y,)]
= (1 - pk(n)) PI‘[Z)(X;;, Yn)] + (pk(n)) Pr[_'b(X:m Yn)]

< (1= pgay) ( Prlb(X;, Vo)) + Pr(=b(X, Vo))
é (]- - pn+d(u,1)0))'

Hence, Pr[=b(Xy,Yn)] > Prid(u,we)- Since py, is decreasing and ) . pn
diverges we have that for every r € N,

Z Pr[ﬁb(Xrn7an)] Z Z prner(u,vg) Z % Z pn+d(u,vo) = OQ.

n>n0 n>m0 nZno

If r > d(u,v), then the sets X,,, UY,, and X,.,,, UY,,, are disjoint when-
ever n # m. Since disjoint sets are colored independently, we can invoke the
Borel-Cantelli Lemma to conclude that —b(X,,, Y;,) almost surely happens for
infinitely many n. Hence there almost surely is no color preserving automor-
phism in A . O

Theorem 6. If a connected, locally finite graph satisfies the DSC, then the
random coloring described above has almost surely zero density and a nonzero
probability of being distinguishing.

Proof. Suppose that the graph G satisfies the DSC with respect to some vertex
u. We first show that the orbit of w under the automorphism group contains
only finitely many vertices which are equivalent with u. Assume that this is not
the case. Let w ~ u be an arbitrary vertex equivalent to u. Then there is ng € N
such that By, (ng) = By(ng). The orbit of u contains infinitely many vertices
equivalent to v and G is locally finite, hence we can find an automorphism g
such that u ~ gu and d(u, gu) > ng. Clearly By, (n) = By, (n) for every n > ng.
This in particular implies that d(u, gu) = d(u, gw) and thus contradicts the DSC
with respect to u.

Now let I be a random coloring as described above. Recall that by the law
of large numbers, the coloring almost surely has density 0. Let F, be the event
that every color preserving automorphism fixes v and let D be the event that
the random coloring is distinguishing.

By Lemma 5 every color preserving automorphism almost surely must map
the vertex u to one of the finitely many equivalent vertices in the orbit of
u. Furthermore there is a nonzero probability that among these finitely many
vertices w is the only one colored blue. Hence Pr(F,) > 0.

Finally, if every color preserving automorphism fixes u, then each such
automorphism also fixes distances from u. By the DSC any two vertices at
the same distance from u are inequivalent. Hence by Lemma 5 we have that
Pr(D | F,) =1 and thus Pr(D) = Pr(F,) - Pr(D | F,,) > 0. O



4 Zero density for graphs with infinite motion
and subquadratic growth

We say that an infinite, locally finite, connected graph G has polynomial growth
if there is a vertex v € V and a constant ¢ € N such that |B,(n)| ~ O(n°). It
is easy to see that polynomial growth and the constant ¢ is independent of the
choice of vertex v. If ¢ = 1, then we say the growth is linear and if ¢ = 2 we
say it is quadratic. Observe that the two-sided infinite path has linear growth,
and that the growth of the grid of integers in the plane is quadratic.

For g € Aut(G), let Fix(g) denote the set of vertices fixed by g. The motion
of g is |V \ Fix(g)|. If every nontrivial automorphism of a graph G has infinite
motion, we say that G has infinite motion. For such graphs the following result
will be of importance.

Lemma 7 ([7, Lemma 3.5]). Let G be a graph with infinite motion. For every
g € Aut(QG), the graph obtained by removing Fix(g) and all incident edges from
G has only infinite components.

Theorem 8. Let G be a connected, locally finite graph with infinite motion. If
€ > 0 and G contains a vertex v for which there exist infinitely many n € N

such that an(1 )
n(l —e
_ 2
=, 2)

then the distinguishing number D(G) of G is 2 and the 2-distinguishing density
18 zero.

Sy (n)] <

Proof. If G has linear growth, then Aut(G) is countable (this was first observed
by T. Tucker, see [2, Lemma 4.2]). Since G has infinite motion, it is known (see
[2, Theorem 3.2]) that the distinguishing number D(G) of G is 2 and moreover
there is a distinguishing coloring of G involving only two colors in which one of
the color classes is finite. Since G is infinite, this implies that the 2-distinguishing
density of G is zero. Hence we can assume that G has super-linear growth. Since
G has super-linear growth, there are infinitely many vertices in G of degree at
least three. Let w ¢ B,(2) be such a vertex.

We first color all vertices red then we color selected vertices blue. We begin
by coloring v and all vertices in B, (1) blue. We will not color any other vertex
in B,(2d(v,w) 4+ 1) blue, nor will there be another blue vertex with three or
more blue neighbors. Note then that any color-preserving automorphism of G
must fix B, (1) setwise and fix v pointwise.

Next, we construct a sequence {n;};en inductively, with nie > 2d(v,w) + 1
and |S,(n1)| < %1_6), and for all 4 > 1,

on; (1 —
nie>mn;—; and |S,(n;)| < %
Let ¢(n) denote the length of the longest chain of subgroups in the symmetric
group Sym(n). It was shown by Cameron, Solomon and Turull ([3]) that ¢(n) =



[22] — b(n) — 1, where b(n) is the number of ones in the base 2 expansion of
2n;(1—e)

n. In particular, this, together with the bound [S,(n;)| < =3

E(\Sq,(nl)D < TL7(1 — 6) <n; —MNij—1.

For n € N, let K, be the automorphism group induced by Aut(G), acting
on B,(n). For H < K,, let m,(H) be the subgroup of Sym(S,(n)) induced by
H.

Notice that if distinct elements g1, g2 € K, have the same image under 7,
then there is an automorphism of G that fixes S,(n) pointwise and acts non-
trivially on B, (n). This contradicts Lemma 7. Hence 7, is injective. Therefore,
for all i € N, the length of the longest chain of subgroups in K, is strictly less
than n; —n;_1.

We will now define a set of vertices C; C B,(n;) \ By(n;—1) that will be
colored blue. We will do this in such a way that no two vertices in C; will
have the same distance from v. If B,(n;) is fixed pointwise by K,,, then choose
any zo € Sy(n;). Otherwise, by Lemma 7 we may choose zg € S,(n;) such
that xo is not fixed by K,,. Assume we have chosen zo,...,z;_1 for some
j > 1. If there exists € B,(n; — j) such that z is not fixed by the pointwise
stabilizer (K, )(xo,....z;,_,) then let x; := x and note that (Kp,) (... z;) i a
proper subgroup of (Ko, )(z,....z;_;)- Otherwise let C; := {zo,...,z;_1}, and
note that in this case the pointwise stabilizer (Ky,)c,) fixes S, (n;—j) pointwise,
and hence fixes B, (n; — j) pointwise. Since the length of the longest chain of
subgroups in K, is strictly less than n; —n,;_; this process must terminate with
Ci C By(n;) \ By(ni—1). Moreover, the setwise stabilizer (K,,){c,} is equal to
the pointwise stabilizer (K, )c,) (because elements in C; lie in different spheres)
and hence (K,,)c,y fixes B,(n;_1) pointwise.

We now color all vertices in J;c Ci blue, and claim that this coloring is
distinguishing with density zero. Let B be the set of blue vertices. If g € Aut(G)
is a color-preserving automorphism then, as we argued previously, it must fix
v and |J;cy Ci pointwise. Hence g fixes B,(n;) for all i € N, and is therefore
trivial. Our coloring is thus 2-distinguishing.

Since the growth of G is super-linear,

, implies that

n
li — =0
n2oe [B,(n)]

However, for all large enough n there is at most one blue vertex in S, (n), so
|B,(n) N B| ~ O(n). Hence the 2-distinguishing density is zero. O
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