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The distinguishing index D′(G) of a graph G is the least number of colours
needed in an edge colouring which is not preserved by any non-trivial auto-
morphism. Broere and Pilśniak conjectured that if every non-trivial automor-
phism of a countable graph G moves infinitely many edges, then D′(G) ≤ 2.
We prove this conjecture.

1 Introduction

A colouring of the vertices or edges of a graph G is called distinguishing if the only
automorphism which preserves it is the identity. Originally inspired by a recreational
mathematics problem, Albertson and Collins [1] first introduced the notion formally in
1996. Despite (or maybe because of) its recreational origin, the concept quickly received
a lot of attention leading to numerous papers on distinguishing colourings of graphs and
other combinatorial structures.
One interesting line of research is the connection between motion (i.e. the minimal

number of elements moved by a non-trivial automorphism) and the least number of
colours needed in a distinguishing colouring. Intuitively, the more elements are moved
by every non-trivial automorphism, the easier it should be to find a colouring with few
colours which isn’t preserved by any of them. Russel and Sundaram [13] were the first to
make this intuition precise. They showed that if the motion of a finite graph is at least
2 · log2 |AutG|, then there is a distinguishing 2-colouring. The same is true for infinite
graphs whose automorphism group is finite. Tucker [15] conjectured, that an analogous
result holds for locally finite graphs with infinite automorphism group.

Conjecture 1 (Infinite motion conjecture [15]). Let G be a locally finite, connected graph
and assume that every automorphism of G moves infinitely many vertices. Then there is
a distinguishing 2-vertex colouring.

Note that if the motion of such a graph is infinite, then then it must be ℵ0 and that
2ℵ0 is a trivial upper bound for the size of the automorphism group.
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While Tucker’s conjecture is still wide open, there are many partial results towards it,
see [3, 6, 7, 10, 11, 14, 16]. Broere and Pilśniak [2] noticed that most of these partial
results can be generalised to edge colourings. Consequently, they conjecured that an
analogous statement to Conjecture 1 should hold in the realm of edge colourings. In fact
their conjecture for edge colourings is even stronger as it doesn’t require the graph to be
locally finite.

Conjecture 2 (Infinite edge motion conjecture [2]). Let G be a countable, connected
graph and assume that every automorphism of G moves infinitely many edges. Then
there is a distinguishing 2-edge colouring.

The two conjectures are closely related. In [8], a generalisation of Whitney’s theorem
is proved, stating that for connected graphs on more than 4 vertices (and in particular
for infinite graphs) there is a natural group isomorphism between AutG and AutL(G),
where L(G) denotes the line graph of G. Hence, a distinguishing vertex colouring of
L(G) translates into a distinguishing edge colouring of G and vice versa. In particular,
Conjecture 1 implies the special case of Conjecture 2 where the graph is assumed to be
locally finite.
Furthermore, if the generalisation of Conjecture 1 to countable graphs were true, then

this would immediately imply Conjecture 2. However, in [12] a counterexample for this
generalisation is constructed, making it somewhat counterintuitive that Conjecture 2
holds in full generality.
Nevertheless, in the present paper we prove Conjecture 2. We also attempt to give some

intuition why this is not as surprising as it may seem at first glance. For this purpose,
in Section 4 we compare distinguishing edge and vertex colourings. We show that if
there is a distinguishing vertex colouring with k colours, then there is a distinguishing
edge colouring using at most k + 1 colours. This is true for arbitrary graphs. One
possible interpretation of this result is that finding a distinguishing edge colouring with
few colours should generally be easier (or at least not harder) then finding such a vertex
colouring and consequently that Conjecture 2 should be weaker than its vertex colouring
counterpart.

2 Notions and notations

We will follow the terminology of [4] for all graph theoretical notions which are not
explicitly defined. Let G = (V,E) be a graph and let AutG denote its automorphism
group. A vertex colouring of G with colours in C is a map c : V → C. Analogously define
an edge colouring. We say that γ ∈ AutG preserves the (vertex or edge) colouring c if
c ◦ γ = c. Two colourings c and d are called isomorphic, if there is γ ∈ AutG such that
c ◦ γ = d.
Call a colouring of G distinguishing, if the identity is the only automorphism which

preserves it. The distinguishing number of G, denoted by D(G) is the least number of
colours in a distinguishing vertex colouring. The distinguishing index of G, denoted by
D′(G) is the analogous concept for edge colourings.
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The motion of a graph G is the least number of vertices moved by a non-trivial au-
tomorphism of G. The edge motion is the least number of edges moved by a non-trivial
automorphism.

3 Infinite motion and 2-distinguishability

In this section we prove Conjecture 2. The following lemma will be useful.

Lemma 3. Let G be a graph with infinite edge motion and let γ ∈ AutG. Denote by
Vmove the set of vertices of G which are not fixed by γ. Let C be the vertex set of a
component of the subgraph of G induced by Vmove. If C is finite, then it must contain a
vertex of infinite degree.

Proof. Assume for a contradiction that C is finite and contains no vertex of infinite
degree. Then γ moves C to some component C ′ of G[Vmove]. Denote by ∂C the set of
vertices outside of C with a neighbour in C. Then each vertex of ∂C is fixed by γ. If
C = C ′ we hence get the following automorphism:

γ′(v) =

{
γ(v) if v ∈ C,
v if v /∈ C.

Now γ′ only moves finitely many vertices all of which have finite degree. Hence it is an
automorphism of G with finite edge motion contradicting the fact that G has infinite
edge motion.
If C 6= C ′ then define the following automorphism:

γ′(v) =


γ(v) if v ∈ C,
γ−1(v) if v ∈ C ′,
v otherwise.

Again this is an automorphism with finite edge motion contradicting the fact that G has
infinite edge motion.

Theorem 4. Every countable graph with infinite edge motion has 2ℵ0 non-isomorphic
distinguishing 2-edge colourings.

Proof. We first show that there is a distinguishing edge colouring by giving an explicit
construction and then argue that within this construction we can make sufficiently many
choices to obtain 2ℵ0 non-isomorphic colourings.

For the construction of the colouring we start with a colouring where all edges are
coloured white and describe an inductive procedure to decide on edges whose colour will
be changed to black. Since we change the colour of every edge at most once, we get a
limit colouring which we will show to be distinguishing.
First we consider only edges incident to vertices of infinite degree. For this pur-

pose choose an enumeration (v∞n )n∈N of these vertices and a strictly increasing sequence
(dn)n∈N of natural numbers. Note that dn ≥ n because the sequence is strictly increasing.
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Now inductively recolour edges incident to v∞n such that this vertex is incident to
exactly dn black edges. We can do so without recolouring any edges incident to any
vertex appearing earlier in the enumeration because there are at most n− 1 such edges
incident to v∞n . In particular, since dn ≥ n there can’t be more than dn black edges
incident to v∞n before step n.
With the colouring described above, no matter how we colour the remaining edges,

every colour preserving automorphism must fix every vertex of infinite degree. This is
because vertices of infinite degree must be mapped to vertices of infinite degree, and all
of them have different degrees in the graph spanned by the black edges.
Now denote by G 6∞ the graph obtained from G by deleting all vertices of infinite degree.

Since all vertices of infinite degree must be fixed by every colour preserving automorphism
it follows from Lemma 3 that no such automorphism of G moves any vertex contained
in a finite component of G 6∞.
Hence we only need to take care of automorphisms moving vertices in infinite com-

ponents of G 6∞. For this purpose let (Ck)k∈N be an enumeration of these components
and let ln be a strictly increasing sequence of natural numbers with l1 > 1. We will now
recolour the edges of each Ck in such a way that

(a) the subgraph of Ck spanned by the black edges is a vertex disjoint union of paths
of lengths 1, lk, lk+1, lk+2, . . ., and

(b) there is no colour preserving automorphism of G stabilising Ck setwise but not
pointwise.

Note that property (a) ensures that there is no automorphism which moves one infinite
component to another because if k1 < k2 then Ck1 contains a black path of length lk1
while Ck2 doesn’t. Property (b) makes sure that there is no automorphism mapping
Ck non-trivially to itself. Combined those two properties make sure that every colour
preserving automorphism must fix every vertex in each Ck. Since we already established
that each such automorphism must also fix all other vertices this means that we have
found a distinguishing edge colouring.
We shall now construct a colouring of the edges of Ck with properties (a) and (b).

First we pick an edge e of Ck and colour it black. Define

Si = {v ∈ V (Ck) | d(v, e) = i}

where d(v, e) denotes the minimal distance (measured in Ck) of v to one of the two
endvertices of e. Observe that Si must be finite for every i since Ck is locally finite.
Throughout the construction the edge e will remain the only black edge which is not

incident to any other black edge. Hence every colour preserving automorphism which
maps Ck onto itself must fix the edge e and thus lie in the setwise stabiliser of every Si.
In particular, if such an automorphism acts non-trivially on Ck then there is some Si on
which it acts non-trivially.
Furthermore, throughout the construction it will be true that every colour preserving

automorphism fixes each vertex in V (Ck) \ S0 which is incident to a black edge. This
fact will be useful to make sure that the paths we colour black are indeed disjoint.
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In what follows we will only consider colour preserving automorphisms which stabilise
Ck setwise but not pointwise. We will denote the set of such automorphisms by Γ. Note
that Γ changes in each recolouring step. Furthermore, every γ ∈ Γ must fix V∞ pointwise
because it is assume to preserve the colouring constructed thus far. In particular we can
without loss of generality assume that such an automorphism acts trivially outside of Ck.
Let i ∈ N be minimal with the property that there is γ ∈ Γ which acts non-trivially

on Si. Choose v ∈ Si and γ ∈ Γ such that γ(v) 6= v. Since all vertices moved by γ have
finite degree, Lemma 3 tells us that there must be a ray starting in v which consists only
of vertices which are moved by γ. Furthermore we can without loss of generality assume
that the ray starts in Si and otherwise only contains vertices in Sj for j > i. This can
be achieved by moving to a suitable subray since

⋃
j≤i Sj only contains finitely many

vertices. Since every vertex of the ray is moved by γ and γ is colour preserving we infer
that the ray contains no vertex which is incident to a black edge.
Now let ln be the smallest length in the sequence lk, lk+1, . . . which has not been used

yet. We colour an initial piece P of length ln of our ray black and leave the rest of the
colouring as it is.
Clearly P is vertex disjoint from all other black paths constructed so far. Furthermore,

since there is no other black path of length ln in Ck, each automorphism in Γ must fix
P setwise (note that by recolouring P we changed Γ). Finally every such automorphism
must fix P pointwise because only one endpoint of P lies in the set Si.
Since |Si| is an upper bound on the number of vertex disjoint paths starting at Si we

end up with no γ ∈ Γ acting non-trivially on Si after finitely many steps. Iterate the
procedure with the next (larger) i.
If after finitely many steps of this iteration we end up with Γ = {id} then we put

disjoint black paths of the remaining lengths anywhere in the (infinite) white part of
Ck, otherwise continue inductively forever. This ensures that the colouring satisfies (a)
which will be convenient when showing that there are continuum many non-isomorphic
distinguishing colourings.
In the limit we get a colouring with infinitely many black paths of different lengths. An

element of Γ which preserves this limit colouring hence must preserve all of those paths
setwise, in particular it must be a colour preserving automorphism of the colourings
obtained in every single step of the construction. However, such an automorphism must
act non-trivially on some Si which implies that there is some step for which it does not
preserve the colouring. Hence the limit colouring satisfies properties (a) and (b). If we
carry out this construction for every infinite component we thus get a distinguishing
2-edge colouring.
It remains to show that we still have enough freedom in the construction to obtain 2ℵ0

non-isomorphic such colourings.
Firstly, if there are infinitely many vertices of infinite degree then each of the 2ℵ0

choices for the sequence (dn)n∈N will deliver a colouring which is not isomorphic to any
of the other colourings. The reason for this is, that vertices of infinite degree must be
mapped to vertices of infinite degree while preserving the number of black edges incident
to them.
Secondly, if there is an infinite component of G 6∞ then each of the 2ℵ0 choices for
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the sequence (ln)n∈N will give a colouring which is not isomorphic to any of the other
colourings. Here the reason is, that black paths of length l must be mapped to black
paths of length l.
The only remaining case is that there are only finitely many vertices of infinite degree

and all components of G 6∞ are finite. In this case we can colour the edges in the finite
components any way we want (each choice giving a colouring which is not isomorphic
to any of the others). Hence, if there are infinitely many such edges we are done. The
only way this could fail is that all but finitely many of the components are singletons,
so in particular G 6∞ must have infinitely many isolated vertices. But then there must be
two such vertices which have the same neighbours in G because there are only finitely
many vertices of infinite degree. The transposition of two such vertices would be an
automorphism of G with finite edge motion, a contradiction to the assumption that G
has infinite edge motion.

As a corollary to the above theorem we obtain another partial result towards Con-
jecture 1: we show that it is true for line graphs, the proof works even without the
requirement of local finiteness.

Corollary 5. Conjecture 1 is true for line graphs.

Proof. Let L(G) be a countable, connected line graph of some graph G with infinite
motion. Then G has only one component which contains edges, without loss of gener-
ality assume that G is connected. By [8] the automorphism groups of G and L(G) are
isomorphic by means of the obvious map from AutG to AutL(G). This implies that G
has infinite edge motion and every distinguishing edge colouring of G translates into a
distinguishing vertex colouring of L(G).

4 Edge colourings vs. vertex colourings

The purpose of this section is to compare distinguishing vertex and edge colourings. We
will show how to construct from a distinguishing vertex colouring a distinguishing edge
colouring using at most one more colour. The following construction will be our starting
point.
Let G be a graph and let c : V → C be a colouring of the vertex set of G with colours

in C. Without loss of generality assume that C carries the additional structure of an
Abelian group. Then we can obtain a colouring of the edge set by e 7→ c(u) + c(v) for
e = uv. We will call such an edge colouring a canonical edge colouring. We now derive
some useful properties of canonical edge colourings.

Lemma 6. Let G be a connected graph and let c′ be a canonical edge colouring of G
which comes from a distinguishing vertex colouring c. If there is a non-trivial automor-
phism preserving c′ then it doesn’t preserve c(v) for any vertex v. In particular such an
automorphism can’t have a fixed point in the vertex set.
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Proof. Let γ be a non-trivial automorphism preserving c′. Since γ preserves c′ we know
that for every edge e = uv it holds that

c(u) + c(v) = c′(e) = c′(γe) = c(γu) + c(γv).

Now assume that there was a vertex v0 such that c(v0) = c(γv0). Then for every
neighbour v of v0 it we have

c(v0) + c(v) = c(γv0) + c(γv) = c(v0) + c(γv),

and thus c(v) = c(γv).
By induction on the distance between v and v0 we obtain that c(v) = c(γv) for every

vertex v of G. Hence γ preserves the colouring c and thus it must be the identity.

Corollary 7. Let G be a connected graph and let c′ be a canonical edge colouring corre-
sponding to a distinguishing vertex colouring c with colours in C. Let Γ be the stabiliser
of c′ in AutG. Then |Γ| ≤ |C|.

Proof. By Lemma 6 there is no vertex which is fixed by any γ ∈ Γ. Hence the size of Γ
is bounded from above by the size of the orbits on the vertex set. If the size of any orbit
were > |C|, then there would be two different vertices with the same colour in this orbit.
Hence we would have a non-trivial automorphism mapping some vertex to a vertex with
the same colour, a contradiction.

The above results show that a canonical edge colouring corresponding to a distinguish-
ing vertex colouring is not far from being distinguishing. We now show how to modify it
in order to obtain a distinguishing edge colouring using only one additional colour. We
note that a finite version of the following theorem has been proved (using an entirely
different approach) in [9]. A proof for infinite graphs following essentially the same lines
as the finite proof has been announced by Imrich et al. [5]. It is also worth mentioning
that the bound is known to be tight as there is a family of finite trees for which equality
holds, see [9].

Theorem 8. Let G be a connected graph, then D′(G) ≤ D(G) + 1.

Proof. Let c be a distinguishing k-colouring and let c′ be the corresponding canonical
edge colouring.
If there are two incident edges with the same colour, then take two such edges e and

f and colour both of them with a new colour x. An automorphism which preserves the
resulting colouring either fixes both edges or swaps them. In both cases it is easy to
verify that such an automorphism preserves c′. But since e and f are the only edges with
colour x, such an automorphism must fix the vertex at which e and f meet. Thus it has
a fixed point and by Lemma 6 it must be the identity.
So assume that no two incident edges receive the same colour in c′. Take an arbitrary

edge e and colour it with colour k. Then recolour an edge f incident to e with colour
c′(e). An automorphism which preserves the resulting colouring must fix the edge e

7



because it is the only edge with colour x. It must also fix the edge f because it is the
only edge incident to e which has colour c′(e). Since all the other edges have the same
colours as in c′, the automorphism in question must preserve c′. But it also has to fix
the vertex where e and f meet and thus by Lemma 6 it is the identity.

Corollary 9. If D(G) is infinite then D′(G) ≤ D(G).

Proof. For an infinite cardinal α we have 1 + α = α.

References

[1] M. O. Albertson and K. L. Collins. Symmetry breaking in graphs. Electron. J.
Comb., 3(1):R18, 1996.

[2] I. Broere and M. Pilśniak. The distinguishing index of infinite graphs. Electron. J.
Comb., 22(1):P1.78, 2015.

[3] J. Cuno, W. Imrich, and F. Lehner. Distinguishing graphs with infinite motion and
nonlinear growth. Ars Math. Contemp., 7(1):201–213, 2014.

[4] R. Diestel. Graph theory. Springer-Verlag, Berlin, 3rd edition, 2005.

[5] W. Imrich, R. Kalinowski, M. Pilśniak, and M. H. Shekarriz. Comparing distingush-
ing indices for infinite graphs. 2016. in preparation.

[6] W. Imrich, S. Klavžar, and V. Trofimov. Distinguishing infinite graphs. Electron.
J. Comb., 14(1):R36, 2007.

[7] W. Imrich, S. M. Smith, T. W. Tucker, and M. E. Watkins. Infinite motion and
2-distinguishability of graphs and groups. J. Algebr. Comb., 41(1):109–122, 2015.

[8] H. Jung. Zu einem Isomorphiesatz von H. Whitney für Graphen. Math. Ann.,
164:270–271, 1966.

[9] R. Kalinowski and M. Pilśniak. Distinguishing graphs by edge-colourings. Eur. J.
Comb., 45:124–131, 2015.

[10] F. Lehner. Random colourings and automorphism breaking in locally finite graphs.
Comb. Probab. Comput., 22(6):885–909, 2013.

[11] F. Lehner. Distinguishing graphs with intermediate growth. Combinatorica, 2016.
to appear.

[12] F. Lehner and R. G. Möller. Local finiteness, distinguishing numbers, and Tucker’s
conjecture. Electron. J. Comb., 22(4):P4.19, 2015.

[13] A. Russell and R. Sundaram. A note on the asymptotics and computational com-
plexity of graph distinguishability. Electron. J. Comb., 5:R23, 1998.

8



[14] S. M. Smith, T. W. Tucker, and M. E. Watkins. Distinguishability of infinite groups
and graphs. Electron. J. Comb., 19(2):P27, 2012.

[15] T. W. Tucker. Distinguishing maps. Electron. J. Comb., 18(1):P50, 2011.

[16] M. E. Watkins and X. Zhou. Distinguishability of locally finite trees. Electron. J.
Comb., 14(1):R29, 2007.

9


	Introduction
	Notions and notations
	Infinite motion and 2-distinguishability
	Edge colourings vs. vertex colourings

